Skip to main content
Log in

Occurence Frequency of Storm Wind Waves in the Baltic, Black, and Caspian Seas under Changing Climate Conditions

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The article proposes the method of climatic forecast of the occurrence frequency of synoptic conditions causing severe hydrometeorological events as well as severe events that are genetically related to them, in particular, storm wind waves. The choice of sea level pressure field as an indicator of atmospheric conditions of storm waves is substantiated. The algorithm for the method implementation is developed. It includes the processing of observational/reanalysis data; wind wave simulation; the systematization of synoptic conditions that accompany storm waves under the modern climate; the assessment of the ability of climate models of atmospheric and oceanic general circulation to simulate correctly the frequency of the revealed types of synoptic conditions for the modern climate; and the forecast of the frequency of these types for the possible scenarios of the future climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Budyko, G. S. Golitsyn, and Yu. A. Izrael, Global Climatic Disasters (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  2. E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulating Present-day Climate with the INMCM 4.0 Coupled Model of the Atmospheric and Oceanic General Circulations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 4, 46 (2010)].

    Google Scholar 

  3. E. M. Volodin, N. A. Dianskii, and A. V. Gusev, “Simulation and Prediction of Climate Changes in the 19th-21st Centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, Model of the Earth's Climate System,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 4, 49 (2013)].

    Google Scholar 

  4. Hydrometeorology and Hydrochemistry ofthe USSR Seas, Vol. III: The Baltic Sea, Issue 1: Hydrometeorological Conditions, Ed. by F. S. Terziev et al. (Gidrometeoizdat, Leningrad, 1992) [in Russian].

  5. G. S. Golitsyn, “The Caspian Sea Level as a Probl em of Diagnosis and Prognosis of the Regional Climate Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 31 (1995) [Izv., Atmos. Oceanic Phys., No. 3, 31 (1995)].

    Google Scholar 

  6. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Events: Methods, Instruments, and Results (KRASAND, Moscow, 2013) [in Russian].

    Google Scholar 

  7. G. S. Golitsyn, “The Energy Cycle of Wind Waves on the Sea Surface,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 1, 46 (2010)].

    Google Scholar 

  8. G. S. Golitsyn, V. G. Polnikov, and F. A. Pogarskii, “Numerical Estimates of Mechanical Energy Transfer from the Atmosphere to the Indian Ocean,” Dokl. Akad. Nauk, No. 2, 446 (2012) [Dokl. Phys., No. 1, 446 (2012)].

    Google Scholar 

  9. V. M. Kattsov, N. V. Kobysheva, V. P. Meleshko, et al., Assessment of Macroeconomic Consequences of Climate Change in the Russian Federation for the Period till 2030 and Future Trends, Ed. by V. M. Kattsov and B. N. Porfir'ev (D'ART, Moscow, 2011) [in Russian].

  10. A. V. Kislov, V. M. Evstigneev, S. M. Malkhazova, et al., Forecast of Climatic Resource Availability on the East European Plain under Warming Conditions (MAKS Press, Moscow, 2008) [in Russian].

    Google Scholar 

  11. Integrated Satellite Monitoring of the Russian Seas, Ed. by O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al. (IKI RAN, Moscow, 2011) [in Russian].

  12. A. O. Kokh, Multidimensional Statistical Analysis of Hydrometeorological Fields in the Baltic Sea, Abstracts of Candidate's Thesis in Geography (St. Petersburg State Univ., St. Petersburg, 2004).

    Google Scholar 

  13. M. Yu. Kulakov, A. P. Makshtas, and S. V. Shutilin, “Verification of the NCEP/NCAR Reanalysis Data by Observations at the Drifting Station North Pole,” Problemy Arktiki i Antarktiki, No. 1 (2013) [in Russian].

    Google Scholar 

  14. S. A. Myslenkov and V. S. Arkhipkin, “Analysis of Wind Waves in the Tsemes Bay in the Black Sea Using SWAN Model,” Trudy Gidromettsentra Rossii, No. 350 (2013) [in Russian].

    Google Scholar 

  15. V. G. Polnikov, F. A. Pogarskii, and G. S. Golitsyn, “Space-Time Variability of the Field of Mechanical Energy Transfer from the Atmosphere to the Indian Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 5, 49 (2013)].

    Google Scholar 

  16. V. A. Rumyantsev, L. K. Efimova, G. S. Golitsyn, and V. Ch. Khon, “Variations of Temperature and Hydrologic Regimes of the Region of Ladoga Lake Catchment Basin in the 20th and 21st Centuries Accordtng to Data of Modern Climate Models,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 1, 46 (2010)].

    Google Scholar 

  17. Zh. I. Stont, O. A. Gushchin, and V. F. Dubravin, “Storm Winds in the Southeastern Baltic Sea from the Automatic Weather Station Data in 2004-2010,” Izvestiya Russkogo Geograficheskogo Obshchestva, No. 1, 144 (2012) [in Russian].

    Google Scholar 

  18. G. V. Surkova, K. P. Koltermann, and A. V. Kislov, “Method of Forecasting of Storm Conditions under Climate Change,” Vestnik Moskovskogo Universiteta, Seriya 5. Geografiya, No. 6 (2012) [in Russian].

    Google Scholar 

  19. A Special Report of IPCC Working Group III. Emission Scenarios. Summary for Policy Makers (IPCC, 2000) [Transl. from Engl.].

  20. Ecologic and Geographic Consequences of Global Climate Warming in the 21st Century on the East European Plain and in West Siberia, Ed. by N. S. Kasimov and A. V. Kislov (MAKS Press, Moscow, 2011) [in Russian].

  21. V. S. Arkhipkin, F. N. Gippius, K. P. Koltermann, and G. V. Surkova, “Wind Waves in the Black Sea: Results of a Hindcast Study,” Natural Hazards Earth Syst. Sci., No. 11, 14 (2014).

    Google Scholar 

  22. N. Booij, R. C. Ris, and L. H. Holthuijsen, “A Third-generation Wave Model for Coastal Regions. 1. Model Description and Validation,” J. Geophys. Res., 104 (1999).

    Google Scholar 

  23. J. P. Giratowicz, “Effects of Atmospheric Circulation on Ice Conditions in the Southern Baltic Coastal Lagoons,” Int. J. Climatol., 21 (2001).

    Google Scholar 

  24. "IPCC, 2013: Summary for Policy Makers,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, Cambridge, United Kingdon and New York, NY, USA, 2013).

  25. E. Kalnay, M. Kanamitsu, R. Kistler, et al., “The NCEP/NCAR 40-year Reanalysis Proj ect,” Bull. Amer. Meteorol. Soc., 77 (1996).

    Google Scholar 

  26. A. Lehmann, H.-H. Hinrichsen, and W. Krauss, “Effects of Remote and Local Atmospheric Forcing on Circulation and Upwelling in the Baltic Sea,” Tellus A, 54 (2000).

    Google Scholar 

  27. R. H. Moss, J. A. Edmonds, K. A. Hibbard, et al., “The Next Generation of Scenarios for Climate Change Research and Assessment,” Nature, 463 (2010).

    Google Scholar 

  28. S. A. Pietrek, J. M. Jasinski, and I. A. Winnicki, “Analysis of a Storm Situajion over the Southern Baltic Sea Using Direct Hydrometeorological and Remote Sensing Measurements Results,” Zeszyty Naukowe. Akademia Morska w Szczecinie, No. 110, 38 (2014).

    Google Scholar 

  29. P. Post, V. Truija, and J. Tuulik, “Circulation Weather Types and Their Influence on Temperature and Precipitation in Estonia,” Boreal Env. Res., 7 (2002).

    Google Scholar 

  30. G. V. Surkova, V. S. Arkhipkin, and A. V. Kislov, “Atmospheric Circulation and Storm Events in the Baltic Sea,” Open Geosciences, No. 1 (2015).

    Google Scholar 

  31. G. V. Surkova, V. S. Arkhipkin, and A. V. Kislov, “Atmospheric Circulation and Storm Events in the Black Sea and Caspian Sea,” Central European J. Geosciences, No. 4, 5 (2013).

    Google Scholar 

  32. SWAN Technical Documentation SWAN Cycle III version 40.51A (Delft University of Technology, Netherlands, 2007).

  33. K. Taylor, R. J. Stouffer, and G. A. Meehl, “An Overview of CMIP5 and the Experiment Design,” Bull. Amer. Meteorol. Soc., 93 (2012).

    Google Scholar 

  34. The SWAN Team. Swan User Manual (Delft University of Technology, 2013), www.swan.tudelft.nl.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kislov.

Additional information

Original Russian Text © A.V. Kislov, G.V. Surkova, V.S. Arkhipkin, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 2, pp. 67-77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, A.V., Surkova, G.V. & Arkhipkin, V.S. Occurence Frequency of Storm Wind Waves in the Baltic, Black, and Caspian Seas under Changing Climate Conditions. Russ. Meteorol. Hydrol. 41, 121–129 (2016). https://doi.org/10.3103/S1068373916020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916020060

Keywords

Navigation