Skip to main content
Log in

Weather and Climate Anomalies in Russian Regions Related to Global Climate Change

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Possible mechanisms for the formation of significant weather and climate anomalies in Russia in recent years and their relation to global climate change and natural quasicyclic processes are discussed. Extreme Russian heat wave in 2010, the Amur River flood in 2013, and extreme cold winters are analyzed. All these events were associated with the formation of long-lived blocking anticyclones whose frequency increase can be expected under conditions of global warming. To link such events with the global warming, the effects related to regional and global climatically significant natuial quasicyclic processes should be taken into account. They include the Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, and El Niño—Southern Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Agayan, “Quasistationary Autumn Patterns of the Northern Hemisphere Atmosphere in the Period of FGGE,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 11, 25 (1989) [in Russian].

    Google Scholar 

  2. Analysis of Extreme Weather Conditions on the Territory of Russia in Summer 2010 (Triada ltd, Moscow, 2011) [in Russian].

  3. K. Arpe, L. Bengtsson, G. S. Golitsyn, et al., “Analysis and Modeling of the Hydrological Regime Variations in the Caspian Sea Basin,” Dokl. Akad. Nauk, No. 2, 366 (1999) [Dokl. Phys., 366 (1999)].

    Google Scholar 

  4. A. V. Baidin and V. P. Meleshko, “Response of the Atmosphere at High and Middle Latitudes to the Reduction of Sea Ice Area and the Rise of Sea Surface Temperature,” Meteorol. Gidrol., No. 6 (2014) [Russ. Meteorol. Hydrol., No. 6, 39 (2014)].

    Google Scholar 

  5. P. N. Vargin, A. N. Luk'yanov, and A. V. Gan'shin, “Investigation of Dynamic Processes in the Period of Formation and Development ofthe Blocking Anticyclone over European Russia in Summer 2010,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 5, 48 (2012)].

    Google Scholar 

  6. E. M. Volodin, “On the Nature of Some Superextreme Anomalies of Summer Temperature,” in Analysis of Extreme Weather Conditions on the Territory of Russia in Summer 2010 (Triada ltd, Moscow, 2011)[in Russian].

    Google Scholar 

  7. Roshydromet Second Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation (Roshydromet, Moscow, 2014) [in Russian].

  8. A. S. Ginzburg, “Regional Air Temperature Maxima and the Possibility of Their Simple Energy-balance Estimates,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)].

    Google Scholar 

  9. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, and M. Yu. Bardin, “Distribution Functions of Probabilities of Cyclones and Anticyclones in 1952–2000: An Instrument for the Determination of Global Climate Variations,” Dokl. Akad. Nauk, No. 2, 413 (2007) [Dokl. Phys., No. 2, 413 (2007)].

    Google Scholar 

  10. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, et al., “Assessment of Hydrological Risks and Functions of Atmospheric Vortex Intensity Distribution Based on Reanalysis Data and Climate Models,” Problemy Analiza Riska, No. 1, 4 (2007) [in Russian].

    Google Scholar 

  11. G. S. Golitsyn, I. I. Mokhov, M. G. Akperov, et al., “Assessment of Hydrological Risks and Functions of Atmospheric Vortex Intensity Distribution Based on Reanalysis Data and Model Computations,” in Prediction and Adaptation of Society to Extreme Climate Changes (Triada ltd, Moscow, 2007) [in Russian].

    Google Scholar 

  12. G. S. Golitsyn, I. I. Mokhov, and V. Ch. Khon, “Diagnosis and Modeling of Changes in Hydrological Conditions in the Caspian Sea Basin in the 20th and 21st Centuries,” in Environmental Problems of the Caspian Sea (RAN/NAN SShA, Moscow, Kirov, 2000) [in Russian].

    Google Scholar 

  13. G. V. Gruza and E. Ya. Ran'kova, “Estimation of Probable Contribution of Global Warming to the Genesis of Abnormally Hot Summers in the European Part of Russia,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)].

    Google Scholar 

  14. G. V. Gruza, E. Ya. Ran'kova, L. K. Kleshchenko, and L. N. Aristova, “A Relationship between Climate Anomalies over Russia and El Niño-Southern Oscillation Events,” Meteorol. Gidrol., No. 5 (1999) [Russ. Meteorol. Hydrol., No. 5 (1999)].

    Google Scholar 

  15. V. I. Danilov-Danil'yan, A. N. Gel'fan, Yu. G. Motovilov, and A. S. Kalugin, “Disastrous Flood of 2013 in the Amur Basin: Genesis, Recurrence Assessment, Simulation Results,” Vodnye Resursy, No. 2, 41 (2014) [Water Resources, No. 2, 41 (2014)].

    Google Scholar 

  16. V. I. Danilov-Danil'yan, A. N. Gel'fan, Yu. G. Motovilov, and A. S. Kalugin, “Modeling of 2013 Disastrous Flood Formation in the Amur Basin,” in ExtremeFloods in the Amur RiverBasin: Causes, Forecasts, andRecommendations (Roshydromet, Moscow, 2014) [in Russian].

    Google Scholar 

  17. I. V. Zheleznova and D. Yu. Gushchina, “The Response of Global Atmospheric Circulation to Two Types of El Niño,” Meteorol. Gidrol., No. 3 (2015) [Russ. Meteorol. Hydrol., No. 3, 40 (2015)].

    Google Scholar 

  18. V. D. Kaznacheeva and I. V. Trosnikov, “Estimation of Dependence of Seasonal Predictability of Meteorological Quantities in Different Regions of the Northern Hemisphere on the El Niño-Southern Oscillation Phenomenon,” Meteorol. Gidrol., No. 2 (2008) [Russ. Meteorol. Hydrol., No. 2, 33 (2008)].

    Google Scholar 

  19. V. P. Meleshko, G. S. Golitsyn, E. M. Volodin, et al., “Calculation of Water Balance Components over the Caspian Sea Watershed with a Set of Atmospheric General Circulation Models,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  20. A. V. Meshcherskaya, V. M. Mirvis, and M. P. Golod, “Drought of 2010 against a Background of Long-term Variations of Aridtty in Basic Grain-sowing Regions in the European Part of Russia,” Trudy GGO, No. 563 (2011) [in Russian].

    Google Scholar 

  21. I. I. Mokhov, “Hydrological Anomalies and Tendencies of Change in the Basin of the Amur River under Global Warming,” Dokl. Akad. Nauk, No. 5, 455 (2014) [Dokl. Phys., No. 2, 455 (2014)].

    Google Scholar 

  22. I. I. Mokhov, “Action as an Integral Characteristic of Climatic Structures: Estimates for Atmospheric Blockings,” Dokl. Akad. Nauk, No. 3, 409 (2006) [Dokl. Phys., No. 6, 409 (2006)].

    Google Scholar 

  23. I. I. Mokhov, “Specific Features of the 2010 Summer Heat Formation in the European Territory of Russia in the Context of General Climate Changes and Climate Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)].

    Google Scholar 

  24. I. I. Mokhov, “Contemporary Climate Changes in the Arctic,” Vestnik Akad. Nauk, No. 5-6, 85 (2015) [Herald of the Russ. Acad. Sci., No. 3, 85 (2015)].

    Google Scholar 

  25. I. I. Mokhov, M. G. Akperov, M. A. Prokofeva, et al., “Blockings in the Northern Hemisphere and Euro-Atlantic Region: Estimates of Changes from Reanalysis Data and Model Simutations,” Dokl. Akad. Nauk, No. 5, 449 (2013) [Dokl. Phys., No. 2, 449 (2013)].

    Google Scholar 

  26. I. I. Mokhov, J.-L. Dufresne, H. Le Treut, et al., “Changes in Drought and Bioproductivity Regimes in Land Ecosystems in Regions of Northern Eurasia Based on Calculations Using a Global Climatic Model with Carbon Cycle,” Dokl. Akad. Nauk, No. 6, 405 (2005) [Dokl. Phys., No. 9, 405 (2005)].

    Google Scholar 

  27. I. I. Mokhov, A. V. Eliseev, and D. V. Khvorostyanov, “Evolution of the Characteristics of Interannual Climate Variability Associated with the El Niño and La Niña Phenomena,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 36 (2000) [Izv., Atmos. Oceanic Phys., No. 6, 36 (2000)].

    Google Scholar 

  28. I. I. Mokhov and V. K. Petukhov, “Blockings and the Tendencies toward Their Variation,” Dokl. Akad. Nauk, No. 5, 357 (1997) [Dokl. Phys., No. 9, 357 (1997)].

    Google Scholar 

  29. I. I. Mokhov, V. K. Petukhov, and V. A. Semenov, “Multiple Intraseasonal Temperature Regimes and Their Evolution in the IAP RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 2, 34 (1998)].

    Google Scholar 

  30. I. I. Mokhov, V. A. Semenov, and V. Ch. Khon, “Estimates of Possible Regional Hydrologic Regime Changes in the 21st Century Based on Global Climate Models,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 39 (2003) [Izv., Atmos. Oceanic Phys., No. 2, 39 (2003)].

    Google Scholar 

  31. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, et al., “Connection between Eurasian and North Atlantic Climate Anomalies and Natural Variations in the Atlantic Thermohaline Circulation Based on Long-term Model Calculations,” Dokl. Akad. Nauk, No. 5, 419 (2008) [Dokl. Phys., No. 3, 419 (2008)].

    Google Scholar 

  32. I. I. Mokhov and D. A. Smirnov, “Study of the Mutual Influence of the El Niño-Southern Oscillation Processes and the North Atlantic and Arctic Oscillations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 5, 42 (2006)].

    Google Scholar 

  33. I. I. Mokhov and A. V. Timazhev, “Climatic Anomalies in Eurasia from El Niño/La Niña Effects,” Dokl. Akad. Nauk, No. 2, 453 (2013) [Dokl. Phys., No. 1, 453 (2013)].

    Google Scholar 

  34. I. I. Mokhov and A. V. Timazhev, “Model Assessment of Possible Changes of Atmospheric Blockings in the Northern Hemisphere under RCP Scenarios of Anthropogenic Forcings,” Dokl. Akad. Nauk, No. 2, 460 (2015) [Dokl. Phys., No. 1, 460 (2015)].

    Google Scholar 

  35. I. I. Mokhov and A. V. Timazhev, “Assessment of the Predictability of Climate Anomalies in Connection with El Niño Phenomena,” Dokl. Akad. Nauk, No. 6, 464 (2015) [Dokl. Phys., No. 2, 464 (2015)].

    Google Scholar 

  36. I. I. Mokhov and V. Ch. Khon, “Hydrological Regime in Siberian River Basins: Model Estimates of Changes in the 21st Century,” Meteorol. Gidrol., No. 8 (2002) [Russ. Meteorol. Hydrol., No. 8 (2002)].

    Google Scholar 

  37. I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, et al., “Hydrological Anomalies and Change Trends in the Amur River Basin due to Climate Change,” in Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations (Roshydromet, Moscow, 2014) [in Russian].

    Google Scholar 

  38. V. V. Popova, P. A. Morozova, T. B. Titkova, et al., “Regional Features of Present Winter Snow Accumulation Variability in the North Eurasia from Data of Observations, Reanalysis and Satellites,” Led i Sneg, No. 4 (2015) [Ice and Snow, No. 4 (2015)].

    Google Scholar 

  39. V. A. Semenov, “Influence of Oceanic Inflow to the Barents Sea on Climate Variability in the Arctic Region,” Dokl. Akad. Nauk, No. 1, 418 (2008) [Dokl. Phys., No. 1, 418 (2008)].

    Google Scholar 

  40. V. A. Semenov, “Role of Sea Ice in Formation of Wintertime Arctic Temperature Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 4, 50 (2014)].

    Google Scholar 

  41. V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the Ocean Surface Temperature and Sea Ice Concentration on Regional Climate Changes in Eurasia in Recent Decades,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 4, 48 (2012)].

    Google Scholar 

  42. V. A. Semenov, E. A. Shelekhova, I. I. Mokhov, et al., “Influence of the Atlantic Multidecadal Oscillation on Settling Anomalous Climate Regimes in Northern Eurasia Based on Model Simulation,” Dokl. Akad. Nauk, No. 6, 459 (2014) [Dokl. Phys., No. 2, 459 (2014)].

    Google Scholar 

  43. V. Ch. Khon and I. I. Mokhov, “The Hydrological Regime of Large River Basins in Northern Eurasia in the 20th-21st Centuries,” Vodnye Resursy, No. 1, 39 (2012) [Water Resources, No. 1, 39 (2012)].

    Google Scholar 

  44. N. P. Shakina and A. R. Ivanova, “The Blocking Anticyclones: The State of Studies and Forecasting,” Meteorol. Gidrol., No. 11 (2010) [Russ. Meteorol. Hydrol., No. 11, 35 (2010)].

    Google Scholar 

  45. Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations (Roshydromet, Moscow, 2014) [in Russian].

  46. K. Arpe, L. Bengtsson, G. S. Golitsyn, et al., “Connection between Caspian Sea Level Variability and ENSO,” Geophys. Res. Lett., No. 17, 27 (2000).

    Google Scholar 

  47. D. Barriopedro, E. M. Fischer, J. Luterbacher, et al., “The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe,” Science, 332 (2011).

    Google Scholar 

  48. O. N. Bulygina, P. Ya. Groisman, V. N. Razuvaev, and N. N. Korshunova, “Changes in Snow Cover over Northern Eurasia Since 1966,” Environ. Res. Lett., No. 6 (2011).

    Google Scholar 

  49. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, Cambridge, 2013).

  50. J. J. Day, J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, “Sources of Multi-decadal Variability in Arctic Sea Ice Extent,” Environ. Res. Lett., No. 3, 7 (2012).

    Google Scholar 

  51. R. Dole, M. Hoerling, J. Perlwitz, et al., “Was There a Basis for Anticipating the 2010 Russian Heat Wave?", Geophys. Res. Lett., 38 (2011).

    Google Scholar 

  52. J. A. Francis and S. J. Vavrus, “Evidence Linking Arciic Amplification to Exireme Weather in Mid-latitudes,” Geophys. Res. Lett., 39 (2012).

    Google Scholar 

  53. G. S. Golitsyn, K. Arpe, L. Bengtsson, et al., “The Study of the Atmospheric Simulation Water Cycle Variability in Eastern Europe and Its Association with the Caspian Sea Level Change,” in Research Activities in Atmospheric and Oceanic Modeling, Rep. No. 23, WMO/TD-No. 734 (1996).

    Google Scholar 

  54. G. S. Golitsyn, V. P. Meleshko, A. V. Meshcherskaya, et al., “CGM Simulation of Water Balance over Caspian Sea and Its Watershed,” in Proceedings of First Int. AMIP Sci. Conf., WMO/TD-No. 732 (1996).

    Google Scholar 

  55. T. Jung, T. N. Palmer, M. J. Rodwell, and S. Serrar, “Understanding the Anomaiously Cold European Winier 2005/06 Using Relaxation Experiments,” Mon. Wea. Rev., No. 8, 138 (2010).

    Google Scholar 

  56. B.-M. Kim, S.-W. Son, S.-K. Min, et al., “Weakening of the Stratospheric Polar Vortex by Arctic Sea-ice Loss,” Nature Commun., 5 (2014).

    Google Scholar 

  57. M. Latif, V. A. Semenov, and W. Park, “Super El Niños in Response to Global Warming in the Kiel Climate Model,” Climatic Change (2015).

    Google Scholar 

  58. A. R. Lupo, I. I. Mokhov, M. G. Akperov, et al., “A Dynamic Analysis of the Role of the Planetary and Synoptic Scale in the Summer of 2010 Blocking Episodes over the European Part of Russia,” Adv. Meteorol., 2012 (2012).

    Google Scholar 

  59. A. R. Lupo, R. J. Oglesby, and I. I. Mokhov, “Climatological Features of Blocking Anticyclones: A Study of Northern Hemisphere CCM1 Model Blocking Events in Present Day and Double CO2 Concentration Atmospheres,” Climate Dynamics, 13 (1997).

    Google Scholar 

  60. E. P. Meredith, V. A. Semenov, D. Maraun, et al., “Crucial Role of Black Sea Warming in Amplifying the 2012 Krymsk Precipitation Extreme,” Nature Geoscience, 8 (2015).

    Google Scholar 

  61. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, "Decadal and Longer Term Changes in El Niño-Southern Oscillation Characteristics,” Int. J. Climatol., No. 4, 24 (2004).

    Google Scholar 

  62. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere as a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios,” Global and Planetary Change, 122 (2014).

    Google Scholar 

  63. M. Mori, M. Watanabe, H. Shiogama, et al., “Robust Arctic Sea-ice Influence on the Frequent Eurasian Cold Winters in Past Decades,” Nature Geoscience, 7 (2014).

    Google Scholar 

  64. Y. Peings and G. Magnusdottir, “Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Proj ected Arctic Sea Ice Decline: A Numerical Study with CAM5,” J. Climate, 27 (2014).

    Google Scholar 

  65. V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, “Quasiresonant Amplification of Planetary Waves and Recent Northern Hemisphere Weather Extremes,” Proc. Nat. Acad. Sci. USA, 110 (2012).

    Google Scholar 

  66. V. Petoukhov and V. A. Semenov, “A Link between Reduced Barents-Kara Sea Ice and Cold Winter Extremes over Northern Continents,” J. Geophys. Res., Atmos., 115 (2010).

    Google Scholar 

  67. A. Schneidereit, S. Schubert, P. Vargin, et al., “Large-scale Flow and the Long-lasting Blocking High over Russia: Summer 2010,” Mon. Wea. Rev., 140 (2012).

    Google Scholar 

  68. V. Semenov and L. Bengtsson, “Secular Trends in Daily Precipitation Characteristics: Greenhouse Gas Simulation with a Coupled AOGCM,” Climate Dynamics, 19 (2002).

    Google Scholar 

  69. V. A. Semenov and M. Latif, “Nonlinear Winter Atmospheric Circulation Response to Arctic Sea Ice Concentration Anomalies for Different Periods during 1966-2012,” Environ. Res. Lett., No. 5, 10 (2015).

    Google Scholar 

  70. V. A. Semenov and M. Latif, “The Early Twentieth Century Warming and Winter Arctic Sea Ice,” Cryosphere, 6 (2012).

    Google Scholar 

  71. V. A. Semenov, M. Latif, D. Dommenget, et al., “The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature,” J. Climate, 23 (2010).

    Google Scholar 

  72. L. H. Smedsrud et al., “The Role of the Barents Sea in the Arctic Climate System,” Rev. Geophys., 51 (2013).

    Google Scholar 

  73. K. E. Trenberth, G. W. Branstator, D. Karoly, et al., “Progress during TOGA in Understanding and Modeling Global Teleconnections Associated with Tropical Sea Surface Temperatures,” J. Geophys. Res., 103 (1998).

    Google Scholar 

  74. K. E. Trenberth and J. T. Fasullo, “Climate Extremes and Climate Change: The Russian Heat Wave and Other Climate Extremes of 2010,” J. Geophys. Res., 117 (2012).

    Google Scholar 

  75. T. Vihma, “Effects of Arctic Sea Ice Decline on Weather and Climate: A Review,” Surv. Geophys., No. 5, 35 (2014).

    Google Scholar 

  76. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic,” J. Climate, 15 (2002).

    Google Scholar 

  77. WMO Statement on the Status of the Global Climate in 2014, WMO-No. 1152 (WMO, Geneva, 2015).

  78. S. Yang and J. H. Christensen, “Arctic Sea Ice Reduction and European Cold Winters in CMIP5 Climate Change Experiments,” Geophys. Res. Lett., 39 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Additional information

Original Russian Text © I.I. Mokhov, V.A. Semenov, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 2, pp. 16–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Semenov, V.A. Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russ. Meteorol. Hydrol. 41, 84–92 (2016). https://doi.org/10.3103/S1068373916020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916020023

Keywords

Navigation