Skip to main content
Log in

Generation of available potential energy due to the long-wave radiation influx in the atmosphere

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Investigated are the features of the distribution of the generation of available potential energy (APE) due to the influx of long-wave radiation in the atmosphere. The reanalysis (ERA-Interim) data of the European Center for Medium-Range Weather Forecast are used as the reference values of fields for computing APE generation. The obtained results indicate the influence of cloudiness and atmospheric stratification on APE generation due to the inflow of long-wave radiation which values are by 4–5 times smaller than the values of APE generation due to the phase transitions of moisture in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Vakalyuk and A. E. Nikitin, State-of-the-Art of Studying Atmospheric Energy: a Review (Obninsk, 1983) [in Russian].

    Google Scholar 

  2. J. van Mieghem, Atmospheric Energy (Gidrometeoizdat, Leningrad, 1977) [Transl. from Engl.].

    Google Scholar 

  3. T. I. Vasil’eva, M. G. Evseeva, and E. L. Podol’skaya, “Comparison between Radiation Fluxes and Heat Influxes Computed Using Different Clear-sky Transmission Functions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 19 (1983) [Izv., Atmos. Oceanic Phys., No. 6, 19 (1983)].

    Google Scholar 

  4. T. I. Vasil’eva, T. M. Nasper, and E. L. Podol’skaya, “Parameterization of Long-wave Radiation Fluxes in Cloudless Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 11 (1975) [Izv., Atmos. Oceanic Phys., No. 3, 11 (1975)].

    Google Scholar 

  5. A. L. Vetrov, Transformation of Available Potential Energy in Cyclones due to Water Phase Transitions (Perm State Univ., Perm, 2007) [in Russian].

    Google Scholar 

  6. N. A. Kalinin, Dynamic Meteorology. Second Edition (Permskoe Knizhnoe Izdatel’stvo, Perm, 2009) [in Russian].

    Google Scholar 

  7. N. A. Kalinin, Energy of Mid-latitude Cyclones (Perm State Univ., Perm, 1999) [in Russian].

    Google Scholar 

  8. N. A. Kalinin and A. L. Vetrov, “The Generation of Available Potential Energy by Large-scale Condensation in Middle-Latitude Cyclones,” Meteorol. Gidrol, No. 4 (2002) [Russ. Meteorol. Hydrol, No. 4 (2002)].

    Google Scholar 

  9. N. A. Kalinin and A. L. Vetrov, “Assessment of Available Potential Energy Transformation due to Long-wave Radiation in Anticyclones,” Vestnik Udmurtskogo Univ., No. 11 (2005) [in Russian].

    Google Scholar 

  10. E. N. Lorenz, Nature and Theory of Atmospheric General Circulation (Gidrometeoizdat, Leningrad, 1977) [in Russian]

    Google Scholar 

  11. Kh. Yu. Niilisk and L. E. Sammel, Integral Function of Atmospheric Transmission for Computing the Heat Radiation Field in the Troposphere. Tables of Radiation Characteristics of Atmosphere (Acad. Sci. USSR, Tartu, 1969) [in Russian].

    Google Scholar 

  12. E. L. Podol’skaya and I. G. Rivin, “Correction of Integral Function of Transmission in the Long-wave Spectral Region,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 8, 24 (1988) [Izv., Atmos. Oceanic Phys., No. 8, 24 (1988)].

    Google Scholar 

  13. K. G. Rubinshtein, V. V. Oganesyan, and N. V. Grachev, “Simulation of Surface Air Temperature and Its Variability,” Meteorol. Gidrol, No. 12 (2004) [Russ. Meteorol. Hydrol., No. 12 (2004)].

    Google Scholar 

  14. K. G. Rubinshtein and A. M. Sterin, “Comparison of Reanalysis Products and Aerological Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 3, 38 (2002)].

    Google Scholar 

  15. V. M. Khan, A. M. Sterin, and K. G. Rubinshtein, “Estimates of Temperature Trends in the Free Atmosphere from Reanalysis Data and Radiosonde Observations,” Meteorol. Gidrol., No. 12 (2003) [Russ. Meteorol. Hydrol., No. 12 (2003)].

    Google Scholar 

  16. A. V. Chernokul’skii and I. I. Mokhov, “Comparison of Modern Global Climatologies of Clouds,” in Current Problems of Remote Sounding of the Earth from Space: Physical Basis, Methods, and Technologies of Monitoring of Environment, Potentially Hazardous Phenomena and Objects, Vol. 2, No. 6 (Azbuka-2000, Moscow, 2009) [in Russian].

    Google Scholar 

  17. P. R. Bannon, “Atmospheric Available Energy,” J. Atmos. Sci., No. 12, 69 (2012).

    Google Scholar 

  18. B. R. Bullok and D. R. Johnson, “The Generation Available Potential Energy by Latent Heat Release in a Middlelatitude Cyclone,” Mon. Wea. Rev., No. 1, 99 (1971).

    Google Scholar 

  19. P. A. Davis and W. Viezee, “A Model for Computing Infrared Transmission through Atmospheric Water Vapor and Carbon Dioxide,” J. Geophys. Res., No. 18, 69 (1964).

    Google Scholar 

  20. D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).

  21. http://data-portal.ecmwf.int/data/d/interim_daily.

  22. http://isograph.meteoinfo.ru/.

  23. http://reanalyses.org/.

  24. http://www.microsoft.com/ru-ru/download/details.aspx?id=21844.

  25. http://www.microsoft.com/visualstudio/en-us/products/2010-editions/.

  26. D. R. Johnson, “The Available Potential Energy of Storms,” J. Atmos. Sci., No. 4, 27 (1970).

    Google Scholar 

  27. F. Kucharski, “On the Concept of Energy and Available Potential Energy,” Quart. J. Roy. Meteorol. Soc., 123 (1997).

  28. S. C. Lin and P. J. Smith, “Diabatic Heating and Generation of Available Potential Energy in a Tornado-Producing Extratropical Cyclone,” Mon. Wea. Rev., No. 9, 107 (1979).

    Google Scholar 

  29. S. C. Lin and P. J. Smith, “The Available Potential Energy Budget of a Severe Storm Producing Extratropical Cyclone,” Mon. Wea. Rev., No. 6, 110 (1982).

  30. C. A. F. Marques, A. Rocha, J. Corte-Real, et al., “Global Atmosphere Energetics from NCEP-Reanalysis 2 and ECMWF-ERA40 Reanalysis,” Int. J. Climatol., 29 (2009).

  31. P. A. Mooney, F. J. Mulligan, and R. Fealy, “Comparison of ERA-40, ERA-Interim and NCEP/NCAR Reanalysis Data with Observed Surface Air Temperatures over Ireland,” Int. J. Climatol., 31 (2011).

  32. I. Orlanski, “A Rational Subdivision of Scales for Atmospheric Processes,” Bull. Amer. Meteorol. Soc., No. 5, 56 (1975).

    Google Scholar 

  33. O. Pauluis, “Sources and Sinks of Available Potential Energy in a Moist Atmosphere,” J. Atmos. Sci., 64 (2007).

  34. J. R. D. Pinto and R. P. da Rocha, “The Energy Cycle and Structural Evolution of Cyclones over Southeastern South America in Three Case Studies,” J. Geophys. Res. Atmos., 116 (2011).

  35. P. Siegmund, “The Generation of Available Potential Energy, According to Lorenz Exact and Approximate Equations,” Tellus, A, 46 (1994).

  36. P. J. Smith, “On the Contribution of a Limited Region to the Global Energy Budget,” Tellus, No. 2, 21 (1969).

    Google Scholar 

  37. P. J. Smith, “The Energies of Extratropical Cyclones,” Rev. Geophys. and Space Phys., No. 2, 18 (1980).

    Google Scholar 

  38. P. J. Smith and P. M. Dare, “The Kinetic and Available Potential Energy Budget of a Winter Extratropical Cyclone System,” Tellus, A, No. 1, 38 (1986)

    Google Scholar 

  39. N. S. Tracton, “The Role of Cumulus Convection in the Development of Extratropical Cyclones,” Mon. Wea. Rev., No. 6, 101 (1973).

  40. D. G. Vincent, “Generation of Available Potential Energy of an Extratropical Cyclone System,” Mon. Wea. Rev., No. 11, 105 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kalinin.

Additional information

Original Russian Text © N.A. Kalinin, I.L. Lukin, 2014, published in Meteorologiya i Gidrologiya, 2014, No. 3, pp. 50–62.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, N.A., Lukin, I.L. Generation of available potential energy due to the long-wave radiation influx in the atmosphere. Russ. Meteorol. Hydrol. 39, 168–177 (2014). https://doi.org/10.3103/S1068373914030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373914030054

Keywords

Navigation