Skip to main content
Log in

Modeling the concentration of pollutants using the WRF-ARW atmospheric model and CHIMERE chemistry transport model

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Described is a system for analyzing and forecasting the air quality in the central regions of Russia, During the operation of the system, the detailed meteorological information provided by the WRF-ARW model is used by the CHIMERE chemistry transport model for simulating the processes of transport, chemical transformation, and deposition of atmospheric minor constituents. Considered is the quality of retrieved and forecasted (with the lead time up to three days) concentrations of O3, NO2, NO, CO, and PM10. The presented verification scores of pollutant concentrations demonstrate a relative success of the system. Demonstrated is a need in improving the data on the emissions of the air pollutants used for simulations. A procedure for the statistical correction of computed concentrations is described and verification scores of its results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Zaripov, “A Review of Modern Methods for Spatial Detailing of Meteorological Fields,” Dinamika Okruzhayushchei Sredy i Global’nye Izmeneniya Klimata, No. 1 (2010) [in Russian].

    Google Scholar 

  2. R. B. Zaripov, I. B. Konovalov, I. N. Kuznetsova, et al., “WRF-ARW and CHIMERE Models for Numerical Forecasting of Surface Ozone Concertration,” Meteorol. Gidrol, No. 4 (2011) [Russ. Meteorol. Hydrol., No. 4, 36 (2011)].

    Google Scholar 

  3. I.B. Konovalov, M. Beekmann, I. N. Kuznetsova, et al., “Estimation of the Influence that Natural Fires Have on Air Pollution in the Region of Moscow Megalopolis Based on the Combined Use of Chemical Transport Model and Measurement Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 4, 47 (2011)].

    Google Scholar 

  4. I. B. Konovalov, N. F. Elanskii, A. M. Zvyagintsev, et al., “Validation of Chemistry Transport Model of the Lower Atmosphere in the Central European Region of Russia Using Ground-based and Satellite Measurement Data,” Meteorol. Gidrol., No. 4 (2009) [Russ. Meteorol. Hydrol., No. 4, 34 (2009)].

    Google Scholar 

  5. I. N. Kuznetsova, R. B. Zaripov, I. B. Konovalov, et al., “The computational Complex Including a Mesoscale Atmospheric Model and a Chemistry Transport Model as a Module of the Air Quality Assessment System,” Optika Atmosfery i Okeana, No. 6, 23 (2010) [Atmos. Oceanic Optics, No. 6, 23 (2010)].

    Google Scholar 

  6. A. Yu. Yurova, A. V. Paramonov, I. B. Konovalov, et al., “Forecast of the Intensity of Thermal Radiation and Aerosol Emission from Forest Fires at the Central European Region,” Optika Atmosfery i Okeana, No. 3, 26 (2013) [Atmos. Oceanic Optics, No. 3, 26 (2013)].

    Google Scholar 

  7. K. W. Appel, S. J. Rosette, R. C. Gilliam, and L. E. Pleim, “Sensitivity of the Community Multiscale Air Quality (CMAQ) Model v4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers,” Geosci. Model. Dev., 3 (2010).

  8. ARW Version 3 Modeling System User’s Guide. April 2011, www.mmm.ucar.edu.

  9. A. Baklanov, “Chemical Weather Forecasting: A New Concept of Integrated Modelling,” Adv. Sci. Res., 4 (2010).

  10. A. Baklanov, U. Korsholm, A. Mahura, et al., “ENVIRO-HIRLAM: On-line Coupled Modelling of Urban Meteorology and Air Pollution,” Adv. Sci. Res., 2 (2008).

  11. Documentation of the Chemistry-Transport Model CHIMERE, Version Chimere 2008, November 2008, www.lmd.polythechnique.fr/chimere.

  12. P. Ginoux, M. Chin, I. Tegen, et al., “Sources and Distributions of Dust Aerosols Simulated with the GOCART Model,” J. Geophys. Res., No. D17, 106 (2001).

    Google Scholar 

  13. G. A. Grell, J. D. Fast, W. I. Gustafson, Jr., et al., “On-line Chemistry within WRF: Description and Evaluation of a State-of-the-art Multiscale Air Quality and Weather Prediction Model,” in Integrated Systems of Meso-meteorological and Chemical Transport Models (2011).

    Google Scholar 

  14. G. A. Grell, S. E. Peckham, R. Schmitz, et al., “Fully Coupled Online Chemistry Model within the WRF Model,” Atmos. Environ., 39 (2005).

  15. C. Honore, L. Rouïl, R. Vautard, et al., “Predictability of European Air Quality: Assessment of 3 Years of Operational Forecasts and Analyses by the PREV’AIR System,” J. Geophys. Res., 113 (2008).

  16. P. B. Hooghiemstra, M. C. Krol., J. F. Meirink, et al., “Optimizing Global CO Emissions Using a Four-dimensional Variational Data Assimilation System and Surface Network Observations,” Atmos. Chem. Phys. Discuss., 11 (2011).

  17. L. Horowitz, S. Walters, D. L. Mauzerall, et al., “A Global Simulation of Tropospheric Ozone and Related Tracers: Description and Evaluation of MOZART, Version 2,” J. Geophys. Res., No. D24, 108 (2003).

    Google Scholar 

  18. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  19. I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, et al., “Atmospheric Impacts of the 2010 Russian Wildfires: Integration Modelling and Measurements of an Extreme Air Pollution Episode in the Moscow Region,” Atmos. Chem. Phys., No. 19, 11 (2011).

    Google Scholar 

  20. I. B. Konovalov, M. Beekmann, F. Meleux, et al., “Combining Deterministic and Statistical Approaches for PM10 Forecasting in Europe,” Atmos. Environ., No. 40, 43 (2009).

    Google Scholar 

  21. I. B. Konovalov, M. Beekmann, A. Richter, et al., “Multi-annual Changes of NOx Emissions in Megacity Regions: Nonlinear Trend Analysis of Satellite Measurement Based Estimates,” Atmos. Chem. Phys., 10 (2010).

    Google Scholar 

  22. U. S. Korsholm, A. Baklanov, A. Gross, et al., “Online Coupled Chemical Weather Forecasting Based in HIRLAM—Overview and Prospective of Enviro-HIRLAM,” HIRLAM Newsletter, 54 (2008).

  23. J. Kukkonen, T. Olsson, D. M. Schultz, et al., “A Review of Operational, Region-scale, Chemical Weather Forecasting Models in Europe,” Atmos. Chem. Phys., 12 (2012).

  24. P. Lee, D. Kang, J. McQueen, et al., “Impact of Domain Size on Modeled Ozone Forecast for the Northeastern United States,” J. Appl. Meteorol. and Climate, 47 (2008).

  25. P. Liu, A. P. Tsimpidi, Y. Hu, et al., “Differences between Downscaling with Spectral and Grid Nudging Using WRF,” Atmos. Chem. Phys., 12 (2012).

    Google Scholar 

  26. C. Marzban, S. Sandgathe, and E. Kalnay, “MOS, Perfect Prog, and Reanalysis,” Mon. Wea. Rev., 134 (2006).

    Google Scholar 

  27. A. Meij, A. Gzella, P. Thunis, et al., “The Impact of MM5 and WRF Meteorology over Complex Terrain on CHIMERE Model Calculations,” Atmos. Chem. Phys. Discuss., 9 (2009).

  28. G. Miguez-Macho, “Regional Climate Simulations over North America: Interaction of Local Processes with Improved Largescale Flow,” J. Climate, 18 (2005).

  29. G. Miguez-Macho, “Spectral Nudging to Eliminate the Effects of Domain Position and Geometry in Regional Climate Model Simulations,” J. Geophys. Res.-Atmos., 109 (2004).

    Google Scholar 

  30. M. D. Moran, J. Chen, S. Menard, et al., “Two Years of Operational AQ Forecasting with GEM-MACH15: A Look Back and a Look Ahead,” in Proceedings of the 10th Annual CMAS Conference (2011).

    Google Scholar 

  31. T. L. Otte, G. Pouliot, J. E. Pleim, et al., “Linking the Eta Model with the Community Multiscale Air Quality Forecasting System,” Wea. Forecasting, 20 (2005).

    Google Scholar 

  32. L. Rouil, C. Honore, R. Vautard, et al., “PREV’AIR: An Operational Forecasting and Mapping System for Air Quality in Europe,” Bull. Amer. Meteorol. Soc., 90 (2009).

  33. W. C. Scamarock, J. B. Klemp, J. Dudhia, et al., “A Description of the Advances Research WRF Version 3,” NCAR Technical Note (2008).

    Google Scholar 

  34. M. Sofiev, “Aerosol Species in the Air Quality Forecasting System of FMI: Possibilities for Coupling with NWP Models,” in Integrated Systems of Meso-meteorological and Chemical Transport Models (2010).

    Google Scholar 

  35. D. Talbot, M. D. Moran, V. Bouchet, et al., “Development of a New Canadian Operational Air Quality Forecast Model,” in Air Pollution Modelling and Its Application XIX, Ed. by C. Borrego and A. I. Miranda (Springer, Dordrecht, 2008).

    Google Scholar 

  36. Y. Tang, G. R. Carmichael, N. Thongboonchoo, et al., “Influence of Lateral and Top Boundary Conditions on Regional Air Quality Prediction: A Multiscale Study Coupling Regional and Global Chemical Transport Models,” J. Geophys. Res., 112 (2007).

  37. M. Valary and L. Menut, “Does an Increase in Air Quality Models’ Resolution Bring Surface Ozone Concentrations Closer to Reality?,” J. Atmos. and Ocean Technol, 25 (2008).

  38. M. G. Vivanco, I. Palomino, F. Martin, et al., “An Evaluation of the Performance of the CHIMERE Model over Spain Using Meteorology from MM5 and WRF Models,” in Computations Science and Its Application—ICCSA 2009 (Springer, Berlin, 2009).

    Google Scholar 

  39. Y. Zhang, M. Bocquet, V. Mallet, et al., “Real-time Air Quality Forecasting, Part I: History, Techniques, and Current Status,” Atmos. Environ, 60 (2012).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.B. Zaripov, I.B. Konovalov, A.A. Glazkova, 2013, published in Meteorologiya i Gidrologiya, 2013, No. 12, pp. 52–67.

About this article

Cite this article

Zaripov, R.B., Konovalov, I.B. & Glazkova, A.A. Modeling the concentration of pollutants using the WRF-ARW atmospheric model and CHIMERE chemistry transport model. Russ. Meteorol. Hydrol. 38, 828–839 (2013). https://doi.org/10.3103/S1068373913120042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373913120042

Keywords

Navigation