Skip to main content
Log in

The tropopause: Variety of definitions and modern approaches to identification

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Presented is a review of the papers dealing with a problem of the tropopause definition as an interface between the troposphere and stratosphere. It is demonstrated that there are more than ten approaches to the tropopause identification based on the differences in thermal, chemical, dynamic, and radiation regimes of the troposphere and stratosphere. Given are the examples of the tropopause approximation with different surfaces or layers of specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Perov and A. Kh. Khrgian, Current Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. N. P. Shakina, The Dynamics of Atmospheric Fronts and Cyclones (Gidrometeoizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  3. N. P. Shakina and V. V. Borisova, “Experience of Using Potential Vorticity to Calculate the Height of the Tropopause,” Meteorol. Gidrol., No. 9 (1992) [Russ. Meteorol. Hydrol., No. 9 (1992)].

    Google Scholar 

  4. N. P. Shakina, A. R. Ivanova, and I. N. Kuznetsova, “Cold Surges and Their Manifestation in Ozonometric Observations at the Kislovodsk High-Altitude Scientific Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 40 (2004) [Izv., Atmos. Oceanic Phys., No. 4, 40 (2004)].

    Google Scholar 

  5. G. N. Shur, N. M. Sitnikov, and A. V. Drynkov, “A Mesoscale Structure of Meteorological Fields in the Tropopause Layer and in the Lower Stratosphere over the Southern Tropics (Brazil),” Meteorol. Gidrol, No. 8 (2007) [Russ. Meteorol. Hydrol., No. 8, 32 (2007)].

    Google Scholar 

  6. J. A. Añel, J. C. Añtuca, L. de la Torre, et al., “Global Statistics of Multiple Tropopauses from the IGRA Database,” Geophys. Res. Lett., 34 (2007).

  7. J. A. Añel, L. Gimeno, L. de la Torre, and R. Nieto, “Changes in Tropopause Height for the Eurasian Region Determined from CARDS Radiosonde Data,” Naturwissenschaften., 93 (2006).

  8. R. A. Anthes, C. Rocken, and Y. H. Kuo, “Applications of COSMIC to Meteorology and Climate,” Terr. Atmos. Oceanic Sci., 11 (2000).

  9. M. Beekman, G. Ancellet, and G. Megie, “Climatology of Tropospheric Ozone in Southern Europe and Its Relation to Potential Vorticity,” J. Geophys. Res., 99 (1994).

  10. S. W. Bell and M. A. Geller, “Tropopause Inversion Layer: Seasonal and Latitudinal Variations and Representation in Standard Radiosonde Data and Global Models,” J. Geophys. Res., 113 (2008).

  11. S. Bethan, G. Vaughan, and S. J. Reid, “A Comparison of Ozone and Thermal Tropopause Height and the Impact of Tropopause Definition of Quantifying the Ozone Content of the Troposphere,” Quart. J. Roy. Meteorol. Soc., 122 (1996).

  12. J. Bian and H. Chen, “Statistics of the Tropopause Inversion Layer over Beijing,” Adv. Atmos. Sci., No. 3, 25 (2008).

    Google Scholar 

  13. T. Birner, “Residual Circulation and Tropopause Structure,” J. Atmos. Sci., 67 (2010).

  14. T. Birner, A. Dornbrack, and U. Schumann, “How Sharp the Tropopause at Midlatitudes?,” Geophys. Res. Lett., No. 14, 29 (2002).

    Google Scholar 

  15. T. Birner, D. Sankey, and T. Shepherd, “The Tropopause Inversion Layer in Models and Analyses,” Geophys. Res. Lett., 33 (2006).

  16. J. Brioude, J.-P. Cammas, O. R. Cooper, and P. Nedelec, “Characterization of the Composition, Structure, and Seasonal Variation of the Mixing Layer above the Extratropical Tropopause as Revealed by MOZA1C Measurements,” J. Geophys. Res., 113 (2008).

  17. K. A. Browning, A. J. Thorpe, A. Montani, et al, “Interaction of Tropopause Depressions with an Extropical Cyclone and Sensitivity of Forecast to Analysis Errors,” Mon. Wea. Rev., 128 (2000).

  18. A. J. Charlton, A. O’Neill, P. Berrisford, and W. A. Lahoz, “Can the Dynamical Impact of the Stratosphere on the Troposphere be Described by Large-scale Adjustment to the Stratospheric PV Distribution,” Quart. J. Roy. Meteorol. Soc., 131 (2005).

  19. S. J. Colucci, “Stratospheric Influences on Tropospheric Weather Systems,” J. Atmos. Sci., 67 (2010).

  20. B. D. Cox, M. Bithell, and L. J. Gray, “Modeling of Stratospheric Intrusions within a Mid-latitude Synoptic-scale Disturbance,” Quart. J. Roy. Meteorol. Soc., 123 (1997).

  21. E. F. Danielsen, “Ozone Transport,” in Ozone in the Free Atmosphere (Van No strand Reinhold, New York, 1985).

    Google Scholar 

  22. L. El’Amraoui, V.-H. Peuch, P. Ricaud, et al., “Ozone Loss in the 2002–2003 Arctic Votrex Deduced from the Assimilation of Odin/SMR O3 and N2O Measurements: N2O as a Dynamical Tracer,” Quart. J. Roy. Meteorol. Soc., 134 (2008).

  23. H. Elbern, J. Hendricks, and A. Ebel, “A Climatology of Tropopause Folds by Global Analyses,” Theor. Appl. Climatol., 59 (1998).

  24. O. M. Evtushevsky, A. V. Grytsai, A. R. Klekociuk, and G. P. Milinevsky, “Total Ozone and Tropopause Zonal Asymmetry during the Antarctic Spring,” J. Geophys. Res., 113 (2008).

  25. P. M. Forster and K. P. Shine, “Radiative Forcing and Temperature Trends from Stratospheric Ozone Changes,” J. Geophys. Res., 102 (1997).

  26. A. Gettelman, P. M. F. Forster, M. Fujiwara, et al., “The Radiation Balance of the Tropical Tropopause Layer,” J. Geophys. Res., 109 (2004).

  27. G. Hakim, “Climatology of Coherent Structures on the Extratropical Tropopause,” Mon. Wea. Rev., 128 (2000).

  28. P. Haynes and E. Shuckburgh, “Effective Diffusivity as a Diagnostic of Atmospheric Transport. 2. Troposphere and Lower Stratosphere,” J. Geophys. Res., 105 (2000).

  29. E. J. Highwood and B. J. Hoskins, “The Tropical Tropopause,” Quart. J. Roy. Meteorol. Soc., 124 (1998).

  30. Y. Hinssen, A. van Delden, T. Opsteegh, and W. de Geus, “Stratospheric Impact on Tropospheric Winds Deduced from Potential Vorticity Inversion in Relation to the Arctic Oscillation,” Quart. J. Roy. Meteorol. Soc., 136 (2010).

  31. M. P. Hoerling, T. K. Schaak, and A. J. Lenzen, “Global Objective Tropopause Analysis,” Mon. Wea. Rev., 119 (1991).

  32. K. P. Hoinka, “Statistics of the Global Tropopause Pressure,” Mon. Wea. Rev., 126 (1998).

  33. J. R. Holton, P. H. Haynes, M. E. McIntyre, et al., “Stratosphere-Troposphere Exchange,” Rev. Geophys., No. 4, 33 (1995).

    Google Scholar 

  34. D. A. Hooper and J. Arvelius, “Monitoring of the Arctic Winter Tropopause: A Comparison of Radiosonde, Ozonosonde and MST Radar Observations,” in MRI Atmospheric Research Programme (2000).

    Google Scholar 

  35. B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the Use and Significance of Isentropic Potential Vorticity Maps,” Quart. J. Roy. Meteorol. Soc., No. 470, 111 (1985).

    Google Scholar 

  36. X. Huang and H. Su, “Cloud Radiative Effect on Tropical Troposphere to Stratosphere Transport Represented in a Large-scale Model,” Geophys. Res. Lett., 35 (2008).

  37. P. James, A. Stohl, C. Forster, et al., “A 15-Year Climatology of Stratosphere-Troposphere Exchange with a Lagrangian Particle Dispersion Model. 2. Mean Climate and Season Variability,” J. Geophys. Res., No. D12, 108 (2003).

    Google Scholar 

  38. K.-E. Kim, E.-S. Jung, B. Campistron, and B.-H. Heo, “A Physical Examination of Tropopause Height and Stratospheric Air Intrusion—A Case Study,” J. Meteorol. Soc. Japan, No. 5, 79 (2001).

    Google Scholar 

  39. R. L. Korty and T. Schneider, “A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity,” J. Climate, 20 (2007).

  40. J. Kowol-Santen, H. Elbern, and A. Ebel, “Estimation of Cross-Tropopause Air-Mass Fluxes at Midlatitudes: Comparison of Different Numerical Methods and Meteorological Situations,” Mon. Wea. Rev., 128 (2000).

  41. A. Kunz, C. Schiller, F. Rohrer, et al., “Statistical Analysis of Water Vapor and Ozone in the UT/LS Observed during SPURT and MOSAIC,” Atmos. Chem. and Physics, 8 (2008).

  42. H. Luce, S. Fukao, F. Dalaudier, and M. Crochet, “Strong Mixing Events near the Tropopause with MU Radar and High Resolution Balloon Techniques,” J. Atmos. Sci., No. 20, 59 (2002).

    Google Scholar 

  43. A. M. M. Manders, W. T. M. Verkley, J. J. Diepeveen, and A. R. Moene, “Application of Vorticity Modification Method to a Case of Rapid Cyclogenesis over the Atlantic Ocean,” Quart. J. Roy. Meteorol. Soc., 133 (2007).

  44. O. Martius, C. Schwierz, and M. Sprenger, “Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere—A Climatological Analysis,” Adv. Atmos. Sci., No. 3, 25 (2008).

    Google Scholar 

  45. J. Meloen, P. Siegmund, P. van Velthoven, et al., “Stratosphere-Troposphere Exchange: A Model and Method Intercomparison,” J. Geophys. Res., No. D12, 108 (2003).

    Google Scholar 

  46. M. C. Morgan and J. Nielsen-Gammon, “Using Tropopause Maps to Diagnose Midlatitude Weather Systems,” Mon. Wea. Rev., 126 (1998).

  47. A. Muller and V. Wirth, “Resolution Dependence of the Tropopause Inversion Layer in an Idealized Model for Upper-Tropospheric Anticyclones,” J. Atmos. Sci., 66 (2009).

  48. D. J. Muraki and G. J. Hakim, “Balanced Asimmetries of Waves of the Tropopause,” J. Atmos. Sci., No. 3, 58 (2001).

    Google Scholar 

  49. J. W. Nielsen-Gammon, “A Visualization of the Global Dynamic Tropopause,” Bull. Amer. Meteorol. Soc., No. 6, 82 (2001).

    Google Scholar 

  50. G. A. Postel and M. H. Hitchman, “Observational Diagnosis of a Rossby Wave Breaking Event along the Subtropical Tropopause,” Mon. Wea. Rev., 129 (2001).

  51. M. E. Pyle, D. Keyser, and L. F. Bosart, “A Diagnostic Study of Jet Streams: Kinematic Signatures and Relationship to Coherent Tropopause Disturbances,” Mon. Wea. Rev., 132 (2004).

  52. W. J. Randel and F. Wu, “The Polar Summer Tropopause Inversion Layer,” J. Atmos. Sci., 67 (2010).

  53. W. J. Randel, W. Fu, and P. Forster, “The Extratropical Tropopause Inversion Layer: Global Observations with GPS data, and Radiative Forcing Mechanism,” J. Atmos. Sci., 12 (2007).

  54. M. V. Ratnam, T. Tsuda, S. Mori, and T. Kozu, “Modulation of Tropopause Temperature Structure Revealed by Simultaneous Radiosonde and CHAMP GPS Measurements,” J. Meteorol. Soc. Japan, No. 6, 84 (2006).

    Google Scholar 

  55. F. Ravetta, G. Ancellet, J. Kowol-Santen, et al., “Ozone, Temperature, and Wind Field Measurements in a Tropopause Fold: Comparison with a Mesoscale Model Simulation,” Mon. Wea. Rev., 127 (1999).

  56. T. Reichler, P. J. Kushner, and L. M. Polvani, “The Coupled Stratosphere-Troposphere Response to Impulsive Forcing from the Troposphere,” J. Atmos. Sci., 62 (2005).

  57. G. C. Reid and K. S. Gage, “On the Annual Variation in Height of the Tropical Tropopause,” 38 (1981).

  58. E. P. Salathe, Jr. and R. B. Smith, “In Situ Observations of Temperature Microstructure above and below the Tropopause,” J. Atmos. Sci., No. 21, 49 (1992).

    Google Scholar 

  59. T. Schneider, “Zonal Momentum Balance, Potential Vorticity, Dynamics, and Mass Fluxes on Near-Surface Isentropes,” J. Atmos. Sci., 62 (2005).

  60. M. A. Shapiro, “Further Evidence of the Mesoscale and Turbulent Structure of Upper Level Jet Stream-Frontal Zone Systems,” Mon. Wea. Rev., 106 (1978).

  61. T. G. Shepherd, “Issues in Stratosphere-Troposphere Coupling,” J. Meteorol. Soc. Japan, No. 4B, 80 (2002).

    Google Scholar 

  62. M. Siegmund, On the Coupling between the Stratosphere and the Troposphere (Technische Universitet Eindhoven, Proefschrift, Eindhoven, 2003).

    Google Scholar 

  63. S.-W. Son, S. Lee, and S. B. Feldstein, “Interseasonal Variability of the Zonal-mean Extratropical Tropopause Height,” J. Atmos. Sci., 64 (2007).

  64. S.-W. Son, L. M. Polvani, D. W. Waugh, et al., “The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends,” J. Climate, 22 (2009).

  65. Y. Song and N. Nakamura, “Eady Instability of Isolated Baroclinic Jets with Meridionally Varying Tropopause Height,” J. Atmos. Sci., 57 (2000).

  66. M. Sprenger, H. Wernli, and M. Bourqui, “Stratosphere-Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause,” J. Atmos. Sci., 64 (2007).

  67. I. Stajner, K. Wargan, S. Pawson, et al., “Assimilated Ozone from EOS-Aura: Evaluation of the Tropopause Region and Tropospheric Columns,” J. Geophys. Res., 113 (2008).

  68. P. W. Staten and T. Reichler, “Use of Radio Occultation for Long-term Tropopause Studies: Uncertainties, Biases, and Instabilities,” J. Geophys. Res., 113 (2008).

  69. W. Steinbrecht, H. Claude, U. Kohler, and K. P. Hoinka, “Correlations between Tropopause Height and Total Ozone: Implications for Long-term Changes,” J. Geophys. Res., 103 (1998).

  70. A. Stohl, P. Bonasoni, P. Cristofanelli, et al., “Stratosphere-Troposphere Exchange: A Review, and What We Have Learned from STACCATO,” J. Geophys. Res., No. D12, 108 (2003).

    Google Scholar 

  71. A. Stohl, N. Spichtinger-Rakowsky, P. Bonasoni, et al., “The Influence of Stratospheric Intrusions and Ozone Concentrations,” Atmos. Environ., 34 (2000).

  72. A. Stohl, H. Wernli, P. James, et al., “A New Perspective of Stratosphere-Troposphere Exchange,” Bull. Amer. Meteorol. Soc., 11 (2003).

  73. Y. Terao, J. A. Logan, A. R. Douglass, and R. S. Stolarski, “Contribution of Stratospheric Ozone to the Interannual Variability of Tropospheric Ozone on the Northern Extratropics,” J. Geophys. Res., 113 (2008).

  74. V. Thouret, J.-P. Cammas, B. Sauvage, et al., “Tropopause Referenced Ozone Climatology and Interannual Variability from the MOZAIC Programme,” Atmos. Chemistry and Physics, 6 (2006).

  75. V. Thouret, A. Marenco, J. Logan, et al., “Comparisons of Ozone Measurements from the MOZAIC Airborne Program and the Ozone Sounding Network at Eight Locations,” J. Geophys. Res., 103 (1998).

  76. J. Thuburn and G. C. Craig, “Stratospheric Influence on Tropopause Height: The Radiative Constraint,” J. Atmos. Sci., 57 (2000).

  77. M. S. Wandshin, J. W. Nielsen-Gammon, and D. Keyser, “A Potential Vorticity Diagnostic Approach to Upper-Level Frontogenesis within a Developing Baroclinic Wave,” J. Atmos. Sci., 57 (2000).

  78. H. Wernli and M. Sprenger, “Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cut-offs near the Extratropical Tropopause,” J. Atmos. Sci., 64 (2007).

  79. L. J. Wilcox, B. J. Hoskins, and K. P. Shine, “A Global-blended Tropopause Based on ERA Data. Part I: Climatology,” Quart. J. Roy. Meteorol. Soc., 138 (2012).

  80. V. Wirth, “Cyclone-Anticyclone Asymmetry Concerning the Height of the Thermal and Dynamical Tropopause,” J. Atmos. Sci., 58 (2001).

  81. WMO: Definition of the Tropopause, WMO Bull., No. 6 (1957).

  82. WMO: Atmospheric Ozone 1985, Techn. Rep. No. 16 (WMO, Geneva, 1986).

  83. A. Zahn, C. A. M. Brenninkmeijer, and P. F. J. Velthoven, “Passenger Aircraft Project CARIBIC 1997–2002. Parti: The Extratropical Chemical Tropopause,” Atmos. Chemistry and Physics Discussion, 4 (2004).

  84. G. Zangl and K. P. Hoinka, “The Tropopause in Polar Region,” J. Climate, 14 (2001).

  85. G. Zangl and V. Wirth, “Synoptic-scale Variability of the Polar and Subpolar Tropopause: Data Analysis and Idealized PV Inversions,” Quart. J. Roy. Meteorol. Soc., 128 (2002).

  86. X.-L. Zhou, M. A. Geller, and M. Zhang, “Cooling Trend of the Tropical Cold Point Tropopause Temperatures and Its Implications,” J. Geophys. Res., 106 (2001).

  87. X.-L. Zhou, M. A. Geller, and M. Zhang, “Tropical Cold Point Tropopause Characteristics Derived from ECMWF Reanalyses and Soundings,” J. Climate, 14 (2001).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.R. Ivanova, 2013, published in Meteorologiya i Gidrologiya, 2013, No. 12, pp. 23–36.

About this article

Cite this article

Ivanova, A.R. The tropopause: Variety of definitions and modern approaches to identification. Russ. Meteorol. Hydrol. 38, 808–817 (2013). https://doi.org/10.3103/S1068373913120029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373913120029

Keywords

Navigation