Skip to main content
Log in

Simulation of orographically generated waves in a nonhydrostatic model of an adiabatic atmosphere

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Results of numerical experiments on the simulation of a flow moving around an isolated mountain are presented. The influence of the sizes of a barrier and of the flow velocity on characteristics of wave oscillations is discussed. All calculations are carried out with the authors’ two-dimensional (in the vertical plane) version of a nonhydrostatic dynamic scheme, in which equations of the dry quasi-incompressible atmosphere are solved with a semi-implicit semi-Lagrangian method. This method uses large time steps as compared to explicit-implicit Eurlerian methods. The results of calculations agree with results obtained by other authors, which gives hope for finding physically correct solutions in the simulation of nonhydrostatic processes in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Kochin, Influence of Terrain Shape on the Waves at the Interface of Two Masses of a Fluid of Different Density, Collection of Works (Izd-vo AN SSSR, Moscow, Leningrad, 1949), Vol. 1.

    Google Scholar 

  2. K. B. Moiseenko, “Tropopause Displacements in the Problem of Overflow of Mountains,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 2, 43 (2007)].

  3. M. A. Tolstykh, “Semi-Lagrangian High-resolution Model of the Atmosphere for Numerical Weather Prediction,” Meteorol. Gidrol., No. 4 (2001) [Russ. Meteorol. Gidrol., No. 4 (2001)].

  4. P. Bénard, “On the Use of a Wider Class of Linear Systems of the Atmosphere for the Design of Constant-coefficients Semi-implicit Time Schemes in NWP,” Mon. Wea. Rev., 132 (2004).

  5. R. Bubnová et al., “Integration of the Fully Elastic Equations Cast in the Hydrostatic Pressure Terrain-following Coordinate in the Framework of the ARPEGE/Aladin NWP System,” Mon. Wea. Rev., 123 (1995).

  6. J. P. Clark, “A Small-scale Dynamic Model Using a Terrain Following Coordinate Information,” J. Comput. Phys., 24 (1977).

  7. J. P. Clark and W. R. Peltier, “On the Evolution and Stability of Finite Amplitude Mountain Waves,” J. Atmos. Sci., 34 (1977).

  8. M. J. P. Cullen, “A Test of a Semi-implicit Integration Technique for a Fully Compressible Nonhydrostatic Model,” Quart. J. Roy. Meteorol. Soc., 116 (1990).

  9. H. C. Davies, “A Lateral Boundary Formulation for Multi-level Prediction Models,” Quart. J. Roy. Meteorol. Soc., 102 (1976).

  10. T. Davies, M. J. P. Cullen, et al., “A New Dynamical Core for the Met Office’s Global and Regional Modelling of the Atmosphere,” Quart. J. Roy. Meteorol. Soc., 131 (2005).

  11. T. Davies et al., “Validity of Anelastic and Other Equation Sets as Inferred from Normal-mode analysis,” Quart. J. Roy. Meteorol. Soc., 129 (2003).

  12. K. Drogemeier, The Numerical Simulation of Thunderstorm Outflow Dynamics, Ph. D. Dissertation (University of Illinois at Urbana-Champaign).

  13. D. R. Durran and J. B. Klemp, “A Compressible Model for the Simulation of Moist Mountain Waves,” Mon. Wea. Rev., 111 (1983).

  14. D. R. Durran and J. B. Klemp, “Another Look at Downslope Winds. Part II: Nonlinear Amplification Beneath Wave-overturning Layers,” J. Atmos. Sci., 44 (1987).

  15. W. A. Gallus and M. Rancic, “A Non-hydrostatic Version of the NMC’s Regional Eta Model,” Quart. J. Roy. Meteorol. Soc., 122 (1996).

  16. C. Girard et al., “Finescale Topography and the MC2 Dynamics Kernel,” Mon. Wea. Rev., 133 (2005).

  17. M. Hortal, “The Development and Testing of a New Two-time-level Semi-Lagrangian Scheme (SETTLS) in the ECMWF Forecast Model,” Quart. J. Roy. Meteorol. Soc., 128 (2002).

  18. Z. I. Janjic, J. P. Gerrity, and S. Nickovic, “An Alternative Approach to Nonhydrostatic Modeling,” Mon. Wea. Rev., No. 5, 129 (2001).

  19. J. B. Klemp and D. R. Durran, “An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models,” Mon. Wea. Rev., 111 (1983).

  20. J. B. Klemp and D. K. Lilly, “The Dynamics of Wave-induced Downslope Winds,” J. Atmos. Sci., 32 (1975).

  21. J. B. Klemp and W. C. Skamarock, “Numerical Consistency of Metric Terms in Terrain-following Coordinates,” Mon. Wea. Rev., 131 (2003).

  22. R. Laprise and W. R. Peltier, “On the Structural Characteristics of Steady Finite-amplitude Mountain Waves over Bell-shaped Topography,” J. Atmos. Sci., No. 4, 46 (1989).

  23. K. S. Lele, “Compact Finite Difference Schemes with Spectral-like Resolution,” J. Comput. Phys., 103 (1992).

  24. F. Lipps and R. Hemler, “A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations,” J. Atmos. Sci., 39 (1982).

  25. R. R. Long, “Some Aspects of the Flow of Stratified Fluids. A Theoretical Investigation,” Tellus, 5 (1953).

  26. P. Lynch and X.-Y. Huang, “Initialization of the HIRLAM Model Using a Digital Filter,” Mon. Wea. Rev., 120 (1992).

  27. P. Lync, D. Giard, and V. Ivanovici, “Improving the Efficiency of a Digital Filtering Scheme for Diabatic Initialization,” Mon. Wea. Rev., 125 (1997).

  28. A. McDonald, Alternative Extrapolations to Find the Departure Point in a “Two Time Level” Semi-Lagrangian Integration, HIRLAM Technical Report 34, 1998, http://hirlam.org/.

  29. A. McDonald, “An Examination of Alternative Extrapolations to Find the Departure Point Position in a “Two Time Level” Semi-Lagrangian Integration,” Mon. Wea. Rev., 127 (1999).

  30. J. Michalakes et al., “Development of a Next-generation Regional Weather Research and Forecast Model,” in Developments in Teracomputing: Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology, Ed. by W. Zwiehofer and N. Kreitz (World Scientific, Singapore, 2001).

    Google Scholar 

  31. B. Neta and R. T. Williams, “Rossby Wave Frequencies and Group Velocities for Finite Element and Finite Difference Approximations to the Vorticity-divergence and Primitive Forms of the Shallow Water Equations,” Mon. Wea. Rev., 117 (1989).

  32. Y. Ogura and N. Phillips, “Scale Analysis of Deep and Shallow Convection in the Atmosphere,” J. Atmos. Sci., 19 (1962).

  33. J.-P. Pinty et al., “Simple Tests of a Semi-Lagrangian Model on 2D Mountain Wave Problems,” Mon. Wea. Rev., 123 (1995).

  34. P. Queney, “Synthese des Travaux Theorigues Sur Les Pertubations de Relief. 1 Partie,” La Meteor., 6 (1977).

  35. P. Queney, “Synthese des Travaux Theorigues Sur Les Pertubations de Relief. 2 Partie,” La Meteor., 7 (1977).

  36. D. A. Randall, “Geostrophic Adjustment and the Finite-difference Shallow Water Equations,” Mon. Wea. Rev., 122 (1994).

  37. H. Ritchie and M. Tanguay, “A Comparison of Spatially Averaged Eurlerian and Semi-Lagrangian Treatments of Mountains,” Mon. Wea. Rev., 124 (1996).

  38. A. Rober et al., “An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere,” Mon. Wea. Rev., 100 (1972).

  39. R. Rööm, “Acoustic Filtering in Nonhydrostatic Pressure Coordinate Dynamics: A Variational Approach,” J. Atmos. Sci., 55 (1998).

  40. R. Rööm, Nonhydrostatic Adiabatic Kernel for HIRLAM. Part 1: Fundamentals of Nonhydrostatic Dynamics in Pressure-related Coordinates, HIRLAM Technical Report 48, February 2001, http://hirlam.org/.

  41. R. Rööm and A. Mannik, Non-hydrostatic Adiabatic Kernel for HIRLAM, Part IV: Semi-implicit Semi-Lagrangian Scheme, Technical Report 75, February 2006, http://hirlam.org/.

  42. R. Rööm, A. Mannik, and A. Luhamaa, “Non-hydrostatic Semi-elastic Hybrid-coordinate SISL Extension of HIRLAM. Part I: Numerical Scheme,” Tellus, 59A (2007).

  43. R. Salmon and L. M. Smith, “Hamiltonian Derivation of the Nonhydrostatic Pressure-coordinate Model,” Quart. J. Roy. Meteorol. Soc., 120 (1994).

  44. R. B. Smith, “The Steepening of Hydrostatic Mountain Waves,” J. Atmos. Sci., 34 (1977).

  45. A. Staniforth and J. Cote, “Semi-Lagrangian Integration Schemes for Atmospheric Models. A Review,” Mon. Wea. Rev., 119 (1991).

  46. J. Steppeler et al., “Meso-gamma Scale Forecasts Using the Nonhydrostatic Model LM,” Meteorol. Atmos. Phys., No. 1–4, 82 (2003).

  47. J. Steppeler, R. Hess, U. Schattler, and L. Bonaventura, “Review of Numerical Methods for Nonhydrostatic Weather Prediction Models,” Meteorol. Atmos. Phys., No. 1–4, 82 (2003).

  48. M. A. Tanguay et al., “A Semi-implicit Semi-Lagrangian Fully Compressible Regional Forecast Model,” Mon. Wea. Rev., 118 (1990).

  49. M. C. Tapp and P. W. White, “A Nonhydrostatic Mesoscale Model,” Quart. J. Roy. Meteorol. Soc., 102 (1976).

  50. C. Temperton, M. Hortal, and A. Simmons, “A Two-time-level Semi-Lagrangian Global Spectral Model,” Quart. J. Roy. Meteorol. Soc., 127 (2001).

  51. C. Temperton and A. Staniforth, “An Efficient Two-time-level Semi-Lagrangian Semi-implicit Integration Scheme,” Quart. J. Roy. Meteorol. Soc., 113 (1987).

  52. M. A. Tolstykh, “Vorticity-divergence Semi-Lagrangian Shallow-water Model of the Sphere Based on Compact Finite Differences,” J. Comput. Phys., 179 (2002).

  53. A. A. White, “An Extended Version of Nonhydrostatic, Pressure Coordinate Model,” Quart. J. Roy. Meteorol. Soc., 119 (1989).

  54. M. Xue et al., Advanced Regional Prediction System—ARPS Version 4.0 User’s Guide (Center for Analysis and Prediction of Storms, National Science Foundation, Federal Aviation Administration, The University of Oklahoma).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.Yu. Fadeev, M.A. Tolstykh, 2009, published in Meteorologiya i Gidrologiya, 2009, No. 9, pp. 40–59.

About this article

Cite this article

Fadeev, R.Y., Tolstykh, M.A. Simulation of orographically generated waves in a nonhydrostatic model of an adiabatic atmosphere. Russ. Meteorol. Hydrol. 34, 590–603 (2009). https://doi.org/10.3103/S1068373909090040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373909090040

Keywords

Navigation