Skip to main content
Log in

Mathematical and Simulation Model of a Wind Energy System for a Grid Integrated Distributed Generation

  • Published:
Russian Electrical Engineering Aims and scope Submit manuscript

Abstract

The principle of this article is to derive a numerical model of a wind energy system (WES) with transient speed wind rotary turbine with mechanical drive, pitch angle adjustment, Permanent magnet synchronised generator (PMSG), and power switched converter. The model uses low-solidity rotors which is necessary for a WES when used for power generation. The important features of the WES model is that it is designed to have maximum value of coefficient of performance in line with Betz limit, uses power electronic based connection between the generator and the dc bus paving way for dynamic control, has a good specific rated capacity (SRC) and uses a Permanent magnet synchronous generator instead of conventional induction generator. Simulation models are presented and the output is compared with conventional WES system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Slootweg, J.G., de Haan, S.W.H., Polinder, H., and Kling, W.L., General model for representing variable speed wind turbines in power system dynamics simulations, IEEE Trans. Power Syst., 2003, vol. 18, no. 1, pp. 1312–1322.

    Article  Google Scholar 

  2. Ezhilarasan, G., et al., An improved buck boost converter using auxiliary resonance for photo voltaic based dynamic voltage restorer, Proc. ICPERES 2014 “Power Electronics and Renewable Energy Systems,” Lecture Notes Electr. Eng. Ser. vol. 326, New York: Springer-Verlag, 2014.

  3. Kim, S.-K., Kim, E.-S., and Ahn, J.-B., Modeling and control of a grid-connected wind/PV hybrid generation system, Proc. 2003 IEEE PES Transmission and Distribution Conf. and Exposition, Piscataway, NJ: Inst. Elec-tr. Electron. Eng., 2003, pp. 1202–1207.

  4. Kaderbhai, M. and Yuvarajan, S., Power electronics and control for wind power systems, Proc. 2009 IEEE Conf. on Power Electronics and Machines in Wind Applications, Piscataway, NJ: Inst. Electr. Electron. Eng., 2009, pp. 1–4.

  5. El Moursi, M.S., Goweily, K., Kirtley, J.L., Jr., and Abdel-Rahman, M., Application of series voltage boosting schemes for enhanced fault ridethrough performance of fixed speed wind turbines, IEEE Trans. Power Delivery, 2014, vol. 29, no. 1, pp. 61–71.

    Article  Google Scholar 

  6. Jiang, Z. and Yu, X., Modeling and control of an integrated wind power generation and energy storage system, Proc. 2009 IEEE Power & Energy Society General Meeting, Piscataway, NJ: Inst. Electr. Electron. Eng., 2009, pp. 212–221.

    Google Scholar 

  7. Onara, O.C., Uzunoglu, M., and Alam, M.S., Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system, J. Power Sources, 2006, vol. 161, pp. 707–722.

    Article  Google Scholar 

  8. Iqbal, M T., Modeling and control of a wind fuel cell hybrid energy system, Renewable Energy, 2003, vol. 28, no. 2, pp. 223–237.

    Article  Google Scholar 

  9. Polinder, H., van der Pijl, F.F.A., de Vilder, G.-J., and Tavner, P., Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Trans. Energy Convers., 2006, vol. 21, pp. 725–733.

    Article  Google Scholar 

  10. Ezhilarasan, G. and Prakash, K., DC UPS for critical loads, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 4, pp. 3616–3622.

    Google Scholar 

  11. Xia, Y., Ahmed, K.H., and Williams, B.W., A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion systems, IEEE Trans. Power Electron., 2011, vol. 26, no. 12, pp. 3609–3620.

    Article  Google Scholar 

  12. Kazmi, S.M.R., Goto, H., Guo, H.J., and Ichinokura, O., A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems, IEEE Trans. Ind. Electron., 2011, vol. 58, no. 1, pp. 29–36.

    Article  Google Scholar 

  13. Yazdani A. and Dash, P.P., A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network, IEEE Trans. Power Delivery, 2009, vol. 24, no. 3, pp. 1538–1551.

    Article  Google Scholar 

  14. Ezhilarasan, G. and Jayasree, K.S., Isolated buck-boost converter for a photovoltaic energy harvest system, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 4, pp. 3775–3781.

    Google Scholar 

  15. Huang, N., Simulation of power control of a wind turbine permanent magnet synchronous generator system, MSc Thesis, Milwaukee, WI: Marquette Univ., 2013.

  16. Bang, D., Polinder, H., Shrestha, G., and Ferreira, G.A., Review of generator systems for direct-drive wind turbines, Proc. European Wind Energy Conf. and Exhibition, Brussels, 2008, pp. 109–119.

  17. Zhang, S., Tseng, K.J., Vilathgamuwa, D.M., Nguyen, T.D., and Wang, X.Y., Design of a robust grid interface system for PMSG-based wind turbine generators, IEEE Trans. Ind. Electron., 2011, vol. 58, no. 1, pp. 316–328.

    Article  Google Scholar 

  18. Bhende, C.N., Mishra, S., and Malla, S.G., Permanent magnet synchronous generator-based standalone wind energy supply system, IEEE Trans. Sustainable Energy, 2011, vol. 2, no. 4, pp. 361–373.

    Article  Google Scholar 

  19. Ezhilarasan, G. and Prakash, K., Multi string converters for photovoltaic cell, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 33, pp. 25790–25795.

    Google Scholar 

  20. Yang, J., Fletcher, J.E., and Reilly, J.O., A series dynamic resistor based converter protection scheme for doubly-fed induction generator during various fault conditions, IEEE Trans. Energy Convers., 2010, vol. 25, no. 2, pp. 422–432.

    Article  Google Scholar 

  21. Garcia-Hernandez, R. and Garduno-Ramirez, R., Modeling a Wind Turbine Synchronous Generator, Int. J. Energy Power, 2013, vol. 2, no. 3, pp. 989–997.

    Google Scholar 

  22. Ezhilarasan, G. and Dash, S.S., A new approach in modeling and control of distributed energy resources for performance optimization and reliability improvement in a micro grid, Int. Rev. Model. Simul., 2015, vol. 8, no. 1, pp. 26–40.

    Google Scholar 

  23. Li, S., Haskew, T.A. Swatloski, R.P. and Gathings, W., Optimal and direct-current vector control of direct-driven PMSG wind turbines, IEEE Trans. Power Electron., 2012, vol. 27, no. 5, pp. 2325–2337.

    Article  Google Scholar 

  24. Wu, B., Lang, Y., Zargari, N. and Kouro, S., Power converters in wind energy conversion systems, in Power Conversion and Control of Wind Energy Systems, Hoboken, NJ: Wiley, 2011.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ezhilarasan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhilarasan, G., Gowda, N.D. & Saranya, D. Mathematical and Simulation Model of a Wind Energy System for a Grid Integrated Distributed Generation. Russ. Electr. Engin. 91, 792–798 (2020). https://doi.org/10.3103/S1068371220120068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068371220120068

Keywords:

Navigation