Russian Electrical Engineering

, Volume 84, Issue 10, pp 581–585 | Cite as

Vector control of permanent-magnet synchronous motors

  • S. G. Voronin
  • D. A. Kurnosov
  • A. S. Kul’mukhametova


Schemes and algorithms are considered for vector control of a permanent-magnet synchronous motor by adjusting the stator-field vector magnitude and its angular misalignment relative to the rotor-field vector. The proposed algorithms provide a very varied view of motor mechanical characteristics, demonstrate low sensitivity to the dispersion of engine parameters, use a relatively small amount of computational procedures, and make it possible to implement quite easily a variety of static and dynamic drive operating regimes, including the modes of direct-current control, start, reverse, and others. Simulation results of the drive operation in static and dynamic regimes are given.


permanent-magnet synchronous motors vector control sensorless control engine identifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soltani, J., Abootorabi Zarchi, H., and Arab Markadeh, Gh.R., Stator-flux-oriented based encoderless direct torque control for synchronous reluctance machines using sliding mode approach, World Acad. Sci., Eng. Technol., 2009, no. 58, pp. 883–889.Google Scholar
  2. 2.
    Hai, L., Yan, W.-S., Li, H., and Wei, Y., Model reference adaptive backstepping based direct torque control of PM synchronous motor drives, Proc. 4th IEEE Conf. on Industrial Electronics and Applications, ICIEA, Xi’an, 2009, pp. 1173–1178.Google Scholar
  3. 3.
    Wang, X., Xing, Y., Liu, Y., and Yang, D., Speed-sensorless direct torque control system of permanent magnet synchronous motor, Dongbei Daxue Xuebao/J. Northeast. Univ., 2012, no. 33 (5), pp. 618–621.Google Scholar
  4. 4.
    Paulus, D., Stumper, J.-F., and Kennel, R., Sensorless control of synchronous machines based on direct speed and position estimation in polar stator-current coordinates, IEEE Trans. Power Electron., 2013, no. 28 (5), pp. 2503–2513.Google Scholar
  5. 5.
    Busca, C., Open Loop Low Speed Control for PMSM in High Dynamic Applications, 2010.Google Scholar
  6. 6.
    Abd El Vhab Amr Refki, Karakulov, A.S., Dement’ev, Yu.N., and Kladiev, S.N. Microprocessor system of moment direct control for electric drives based on synchronous motor with permanent magnets, Izv. Vyssh. Uchebn. Zaved. Elektromekhan., 2011, no. 6, pp. 62–66.Google Scholar
  7. 7.
    Yuferov, F.M., Elektricheskie mashiny avtomaticheskikh ustroistv (Electrical Machines for Automated Devices), Moscow: Vysshaya shkola, 1988.Google Scholar
  8. 8.
    Voronin, S.G., Kurnosov, D.A., and Kul’mukhametova, A.S., The way to compare different ways for controlling valve motors switching according to power parameters and controlled properties, Vestn. Yuzhnoural. Gos. Univ., Ser. Energet., 2013, vol. 13, no. 1.Google Scholar
  9. 9.
    Mikroelektrodvigateli dlya sistem avtomatiki (tekhnicheskii spravochnik) (Microelectric Motors for Automated Systems (Technical Handbook)), Lodochnikov, E.A. and Yuferov, M., Eds., Moscow: Energiya, 1969.Google Scholar
  10. 10.
    Kosulin, V.D., Mikhailov, G.B., Omel’chenko, V.V., and Putnikov, V.V., Ventil’nye dvigateli maloi moshchnosti dlya promyshlennykh robotov (Valve Motors of Small Power for Industrial Robots), Leningrad: Energoatomizdat, 1988.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • S. G. Voronin
    • 1
  • D. A. Kurnosov
    • 1
  • A. S. Kul’mukhametova
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations