Advertisement

Magnetization distribution along the cylindrical rod in longitudinal constant uniform magnetic field

  • V. F. Matyuk
  • A. A. Osipov
  • A. V. Strelyukhin
Article

Abstract

The known analytical expressions and experimental data obtained by the authors on the distribution of the cross-section-averaged relative magnetization along a longitudinal solid cylindrical rod magnetized by the uniform field are analyzed. A new calculation formula is offered whose distinctive feature is the allowance for the dependence of the material magnetic characteristics on the field magnetization. Results of calculations and experiments for rods with different geometric parameters and material magnetic characteristics are compared. The applicability of the formula is shown.

Key words

solid cylindrical rod magnetic field magnetization constant field calculations 

References

  1. 1.
    Würschmidt, J., Theorie des Entmagnetisierungsfaktors und der Scherung von Magnetisierungskurven, Braunschweig: Friedrich Vieweg & Sohn Akt. Ges., 1925.Google Scholar
  2. 2.
    Grinberg, G.K., Experimental Check-up of Theoretical Distribution of Magnetization along the Cylinder, Izvestiya Akademii nauk Latviiskoi SSR, 1959, no. 9, pp. 85–89.Google Scholar
  3. 3.
    Oshurkov, P., Kashcheev, V., and Chestnykh, L., Ferromagnetic Cylinder in Constant Field, Izvestiya Akademii nauk Latviiskoi SSR. Ser. fizika, 1960, no. 8(157), pp. 63–72.Google Scholar
  4. 4.
    Yanus, R.I., On Demagnetizing Coefficients of Ferromagnetic Bars, in Sbornik, posvyashchennyi semidesyatiletiyu akademika A.F. Ioffe (Collection of Papers Dedicated to the Seventieth Anniversary of Academician A.F. Ioffe), Moscow: Izd. AN SSSR, 1950, pp. 402–410.Google Scholar
  5. 5.
    Burtsev, G.A., Calculation of Cylindrical Bars Demagnetization Coefficient, Defektoskopiya, 1971, no. 5, pp. 20–30.Google Scholar
  6. 6.
    Matyuk, V.F., Churilo, V.R., and Strelyukhin, A.V., Numerical Simulation of Ferromagnetic Magnetic State in Heterogeneous Constant Magnetic Field by Means of Spatial Integral Equations. Part 1. Description of Computation Procedure, Defektoskopiya, 2003, no. 8, pp. 71–84.Google Scholar
  7. 7.
    Rozenblat, M.A., Demagnetization Coefficients for the Bars of High Permeability, ZhTF, 1954, issue 4, pp. 637–661.Google Scholar
  8. 8.
    Oshurkov, P.G., On Distribution of Magnetic Properties along the Ferromagnetic Cylinder, in Trudy Instituta fiziki Akademii nauk Latviiskoi SSR (Works of Academy of Sciences of the Latvian SSR. Institute on Physics), 1954, VII, pp. 69–77.Google Scholar
  9. 9.
    Matyuk, V.F. and Osipov, A.A., Central Coefficient of Cylinder Demagnetization, Doklady NAN Belarusi, 2006, vol. 50, no. 1, pp. 107–109.Google Scholar
  10. 10.
    Matyuk, V.F., Osipov, A.A., and Strelyukhin, A.V., The Way to Consider Materials’ Magnetic Properties under Determination of the Central Coefficient of Demagnetization for Hollow Cylindrical Bars, Vestsi Natsyyanal’nai Akademii navuk Belarusi. Ser. fiz-tekhn. navuk, 2007, no. 4, pp. 113–120.Google Scholar
  11. 11.
    Matyuk, V.F. and Osipov, A.A., UIMKh Plant to Measure the Magnetic Parameters of Soft Magnetic Materials and Products, Defektoskopiya, 2007, no. 3, pp. 12–25.Google Scholar
  12. 12.
    Strelyukhin, A.V., Calculation of Magnetization Distribution of Hollow Cylindrical Bars under their Magnetization by Homogeneous Quasi-Static Magnetic Field, Priborostroenie-2008. Materialy mezhdunarodnoi nauchno-tekhnich. konf. (Proc. Intern. Scientific-Technical Conf. Instrument Making-2008), (Minsk: BNTU, 12–14 Nov. 2008), pp. 199–200.Google Scholar
  13. 13.
    Mel’gui, M.A., Formulas to Describe the Nonlinear and Hysteresis Properties of Ferromagnetics, Defektoskopiya, 1987, no. 11, pp. 3–10.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • V. F. Matyuk
  • A. A. Osipov
  • A. V. Strelyukhin

There are no affiliations available

Personalised recommendations