Russian Electrical Engineering

, Volume 79, Issue 12, pp 685–693 | Cite as

Optimizing a levitating screen of electromechanical converter of forces

  • Ya. R. Abdullaev


A method is developed for the definition and calculation of optimal values of basic parameters and sizes of a levitating screen in an electromechanical converter of forces with a stepwise magnetic conductor. The method takes into account preset values of the superheat temperature of the levitating screen, the depth of the electromagnetic wave penetration into the aluminum screen, and the given range of variation in the external force acting on the screen. An example of the design of the force converter is presented that is based on the developed engineering technique of design.

Key words

electromechanical converter of forces levitating screen excitation winding working stroke specific magnetic conductivity of air gap optimal values of parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Izmereniya v promyshlennosti. Spravochnik (Industrial Measurements. Handbook), Parfos, P., Ed., Moscow: Metallurgiya, 1980.Google Scholar
  2. 2.
    Khofman, D., Tekhnika izmerenii i obespechenie kachestva (Measurement Technique and Quality Assurance), Moscow: Energoatomizdat, 1983.Google Scholar
  3. 3.
    Abdullaev, Ya.R., Teoriya i primeneniya mnogofunktsional’nykh lineinykh induktsionnykh podvesov (Theory and Applications of Multifunctional Linear Induction Suspensions), Baku: Voennoe izdatel’stvo, 1996.Google Scholar
  4. 4.
    Abdullaev, Ya.R., Electromechanical Converters Using Principle of Induction Suspension, Elektrotekhnika, 1979, no. 9, pp. 19–22.Google Scholar
  5. 5.
    Abdullaev, Ya.R., Teoriya magnitnykh sistem s elektromagnitnymi ekranami (Theory of Magnetic Systems with Electromagnetic Screens), Moscow: Nauka, 2002.Google Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  • Ya. R. Abdullaev

There are no affiliations available

Personalised recommendations