Skip to main content
Log in

Accumulation of Heavy Metals in Vegetable Crops

  • REVIEWS
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Based on extensive material, approaches to assessing the risk of accumulation of heavy metals (HM) in vegetable crops grown in open and protected ground, including in hydroponic conditions, are considered. Agrochemical, biochemical, biogeochemical, and sanitary-hygienic aspects of the accumulation of these metals in vegetable products are shown. It is estimated that, in comparison with organic fertilizers, mineral fertilizers play a purely subordinate role as a source of HM for vegetable crops. The situation becomes more complicated when growing these crops in hydroponic conditions, since it is possible to accumulate harmful elements in the commercial part of the product due to the constant contact of plant roots with a nutrient solution containing micro-admixtures of HM. It is shown that the risk of accumulation of HM in vegetable crops can be managed with the help of various strains of microorganisms introduced into the rhizosphere, which contribute both to the immobilization of these metals in the soil or nutrient solution and prevent their entry into the marketable part of vegetable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Soldatenko, A.V., Razin, A.F., Shatilov, M.V., Ivanova, M.I., Razin, O.A., Rossinskaya, O.V., and Bashkirov, O.V., Interregional exchange in the context of the alignment of the consumption of vegetables in subjects of the Russian Federation, Ovoshchi Ross., 2018, no. 6, pp. 41–46.

  2. Mamedov, M.I., Prospects of protected ground in Russia, Ovoshchi Ross., 2014, vol. 25, no. 4, pp. 4–9.

    Article  Google Scholar 

  3. Analysis of the fruit and vegetable market. Center for the Economics of Markets. 18.08.2020. https://zen.yandex.ru/media/id/5dd01bd9a28a2f180f2b7c29/analiz-rynka-fruktov-i-ovoscei-5f3aee818936fc6e4ac03127.

  4. Center for Industry Expertise of the Russian Agricultural Bank. Production of greenhouse vegetables in Russia, 26.11.2020. https://tass.ru/ekonomika/10108435.

  5. Pinchuk, E.V., Bespal’ko, L.V., Kozar’, E.G., Balashova, I.T., Sirota, S.M., and Shevchenko, T.E., Valuable vegetable green on hydroponics for seasonal use, Ovoshchi Ross., 2019, no. 3, pp. 45–53.

  6. Lukin, S.V., Miroshnikova, Yu.V., and Avramenko, P.M., Monitoring of the content of heavy metals in the soils of the Belgorod region, Agrokhimiya, 2002, no. 8, pp. 86–91.

  7. Lukin, S.V., Yavtusheno, V.E., and Soldat, I.E., Accumulation of cadmium in agricultural crops depending on the level of soil pollution, Agrokhimiya, 2000, no. 2, pp. 73–77.

  8. Lukin, S.V., Soldat, I.E., and Pendyurin, E.A., Regularities of zinc accumulation in agricultural crops, Agrokhimiya, 1999, no. 2, pp. 79–82.

  9. Lukin, S.V., Yevtushenko, V.E., and Soldat, I.E., Accumulation of cadmium in agricultural crops depending on the level of soil contamination, Eurasian Soil Sci., 2000, vol. 3, no. 1, pp. S91–S95.

    Google Scholar 

  10. Lukin, S.V., Agroekologicheskoe Sostoyanie i produktivnost’ pochv Belgorodskoi oblasti (Agroecological State and Soil Productivity of the Belgorod Region), Belgorod: Konstanta, 2016, vol. 343.

  11. Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M., Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett., 2010, no. 8, pp. 199–216.

  12. Clemens, S. and Ma, J.F., Toxic heavy metal and metalloid accumulation in crop plants and foods, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 489–512.

    Article  CAS  Google Scholar 

  13. Goyer, R.A., Toxic and essential metal interactions, Annu. Rev. Nutr., 1997, vol. 17, pp. 37–50.

    Article  CAS  Google Scholar 

  14. Kopittke, P.M., Blamey, F.P.C., Asher, C.J., and Menzies, N.W., Trace metal phytotoxicity in solution culture: a review, J. Exp. Bot., 2010, vol. 61, pp. 945–954.

    Article  CAS  Google Scholar 

  15. Hughes, M.F., Arsenic toxicity and potential mechanisms of action, Toxicol. Lett., 2002, vol. 133, no. 1, pp. 1–16.

    Article  CAS  Google Scholar 

  16. Li, W.C. and Tse, H.F., Health risk and significance of mercury in the environment, Environ. Sci. Pollut. Res., 2015, vol. 22, pp. 192–201.

    Article  CAS  Google Scholar 

  17. Jarup, L. and Akesson, A., Current status of cadmium as an environmental health problem, Toxicol. Appl. Pharmacol., 2009, vol. 238, no. 3, pp. 201–208.

    Article  Google Scholar 

  18. Canfield, R.L., Henderson, C.R., Cory-Slechta, D.A., Cox, C., Jusko, T.A., and Lanphear, B.P., Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter, N. Engl. J. Med., 2003, vol. 348, pp. 1517–1526.

    Article  CAS  Google Scholar 

  19. Mergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., and Murray, M., Methylmercury exposure and health effects in humans: a worldwide concern, Ambio, 2007, vol. 36, pp. 3–11.

    Article  CAS  Google Scholar 

  20. Meharg, A.A., Norton, G., Deacon, C., Williams, P., and Adomako, E.E., Variation in rice cadmium related to human exposure, Environ. Sci. Technol., 2013, vol. 47, pp. 5613–5618.

    Article  CAS  Google Scholar 

  21. Akesson, A. Barregard, L., Bergdahl, I.A., Nordberg, G.F., Nordberg, M., and Skerfving, S., Non-renal effects and the risk assessment of environmental cadmium exposure, Environ. Health Perspect., 2014, vol. 122, pp. 431–438.

    Article  Google Scholar 

  22. EFSA (Eur. Food Saf. Auth.). Scientific opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food, EFSA J., 2009, vol. 980, pp. 1–139.

    Google Scholar 

  23. Clemens, S., Aarts, M.G.M., Thomine, S., and Verbruggen, N., Plant science: the key to preventing slow cadmium poisoning, Trends Plant Sci., 2013, vol. 18, pp. 92–99.

    Article  CAS  Google Scholar 

  24. Peralta-Videaa, J.R., Lopez, M.L., Narayana, M., Saupea, G., and Gardea-Torresdey, J., The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain, Int. J. Biochem. Cell Biol., 2009, vol. 41, pp. 1665–1677.

    Article  Google Scholar 

  25. Veltman, K., Huijbregts, M.A.J., and Hendriks, A.J., Cadmium bioaccumulation factors for terrestrial species: Application of mechanistic bioaccumulation model OMEGA to explain field data, Sci. Total Environ., 2008, vol. 406, pp. 413–418.

    Article  CAS  Google Scholar 

  26. Scheifler, R., Gomot-de Vaufleury, A., Toussaint, M.-L., and Badot, P.-M., Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens, Chemosphere, 2002, vol. 48, pp. 571–579.

    Article  CAS  Google Scholar 

  27. Scheifler, R., de Vaufleury, A., Coeurdassier, M., Crini, N., and Badot, P.-M., Transfer of Cd, Cu, Ni, Pb, and Zn in a soil–plant–invertebrate food chain: A microcosm study, Environ. Toxicol. Chem., 2006, vol. 25, pp. 815–822.

    Article  CAS  Google Scholar 

  28. Gimbert, F., Mench, M., Coeurdassier, M., Badot, P.-M., and de Vaufleur, A., Kinetic and dynamic aspects of soil–plant–snail transfer of cadmium in the field, Environ. Pollut., 2008, vol. 152, pp. 736–745.

    Article  CAS  Google Scholar 

  29. Jamil, K. and Hussain, S., Biochemical variations in ovaries of water hyacinth weevils Neochetina eichhorniae, Ind. J. Exp. Bot., 1993, vol. 31, pp. 36–40.

    CAS  Google Scholar 

  30. Bashkin, V.N., Agrogeokhimiya azota (Agrogeochemistry of Nitrogen), Pushchino: ONTI NTsBI, 1987.

  31. Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z., and McGrath, S.P., Soil contamination in China: current status and mitigation strategies, Environ. Sci. Technol., 2015, vol. 49, pp. 750–759.

    Article  CAS  Google Scholar 

  32. Scientific opinion on lead in food, EFSA J., 2010, vol. 8, p. 1570.

  33. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food, EFSA J., 2012, vol. 10, p. 2985.

  34. FAO (Food Agric. Organ. UN), WHO (World Health Organ.). Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Tech. Report Ser. 960, WHO, Geneva, 2010. http://whqlibdoc.who.int/trs/WHO_TRS_960_eng. pdf.

  35. Chary, N.S., Kamala, C.T., and Raj, D.S.S., Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer, Ecotoxicol. Environ. Saf., 2008, vol. 69, pp. 513–524.

    Article  CAS  Google Scholar 

  36. Chien, L.-C., Hung, T.-C., Choanga, K.-Y., Yeha, C.-Y., Mengc, P.-J., and Shiehd, M.-J., Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan, Sci. Total Environ., 2002, vol. 285, pp. 177–185.

    Article  CAS  Google Scholar 

  37. Zheng, N., Wang, Q., and Zheng, D., Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables, Sci. Total Environ., 2007, vol. 383, pp. 81–89.

    Article  CAS  Google Scholar 

  38. Zheng, N., Wang, Q.C., and Zheng, D.M., Transfer characteristics of mercury, lead, cadmium, zinc and cuprum from soil to vegetable around zinc smelting plant, Huan Jing Ke Xue, 2007, vol. 6, pp. 1349–1354.

    Google Scholar 

  39. Yang, Q.W., Lan, C.Y., Wang, H.B., Zhuang, P., and Shu, W.S., Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China, Agric. Water Manage., 2006, vol. 84, pp. 147–152.

    Article  Google Scholar 

  40. Millis, P., Ramsey, M.H., and John, E.A., Heterogeneity of cadmium concentration in soil as a source of uncertainty in plant uptake and its implications for human health risk assessment, Sci. Total Environ., 2004, vol. 326, pp. 49–53.

    Article  CAS  Google Scholar 

  41. Zhiyuan Li, Zh., Ma, Z., der Kuijp, T.J., Yuan, Z., and Huang, L., A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment, Sci. Total Environ., 2014, vols. 468–469, pp. 843–853.

    Article  Google Scholar 

  42. Bashkin, V.N., Modern Biogeochemistry: Environmental Risk Assessment, Springer-Verlag, 2006.

    Google Scholar 

  43. Belogolova, G.A., Sokolova, M.G., and Proidakova, O.A., Influence of soil bacteria on the behavior of chemical elements in the soil–plant system, Agrokhi-miya, 2011, no. 9, pp. 68–76.

  44. Pishchik, V.N., Vorobyev, N.I., Chernyaeva, I.I., Timofeeva, S.V., Kozhemyakov, A.P., Alexeev, Y.V., and Lukin, S.M., Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress, Plant Soil, 2002, vol. 243, pp. 173–186.

    Article  CAS  Google Scholar 

  45. Belimov, A.A., Kunakova, A.M., Safronova, V.I., Stepanok, V.V., and Yudkin, L.Yu., Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium, Microbiology, 2004, vol. 73, pp. 99–106.

    Article  CAS  Google Scholar 

  46. Shabaev, V.P., Bocharnikova, E.A., and Ostroumov, V.E., Remediation of cadmium-polluted soil using plant growth-promoting rhizobacteria and natural zeolite, Eurasian Soil Sci., 2020, vol. 53, pp. 809–819.

    Article  Google Scholar 

  47. Shabaev, V.P., Efficiency of using N2-fixing bacterium under growing plants in various soil conditions, Agro-khimiya, 2020, no. 11, pp. 41–52.

  48. Krupa, P. and Kozdrój, J., Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings, Water Air Soil Pollut., 2007, vol. 182, pp. 83–90.

    Article  CAS  Google Scholar 

  49. Awad, F. and Romheld, V., Mobilization of heavy metals from contaminated calcareous soils by plant born, microbial and synthetic chelators and their uptake by wheat plants, J. Plant Nutr., 2000, vol. 23, pp. 1847–1855.

    Article  CAS  Google Scholar 

  50. Zaidi, S., Usmani, S., Singh, B.R., and Musarrat, J., Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea, Chemosphere, 2006, vol. 64, pp. 991–997.

    Article  CAS  Google Scholar 

  51. Kravchenko, L.V., Shaposhnikov, A.I., Makarova, N.M., Azarova, T.S., and Tikhonovich, I.A., Dynamics of abundance of antifungal strains of Pseudomonas in the rhizosphere of hydroponic cucumbers grown on greenhouse mineral substrate, Microbiology, 2006, vol. 75, pp. 343–347.

    Article  CAS  Google Scholar 

  52. Gadd, G.M., Heavy metal accumulation by bacteria and other microorganisms, Experientia, 1990, vol. 46, pp. 834–840.

    Article  CAS  Google Scholar 

  53. Belimov, A.A. and Tikhonovich, I.A., Microbiological aspects of resistance and accumulation of heavy metals by plants, S-kh. Biol., 2011, no. 3, pp. 10–15.

  54. Lukatkin, A.S., Bashmakov, D.I., and Kipaykina, N.V., Protective role of thidiazuron treatment of cucumber seedlings under the action of heavy metals and cooling, Fiziol. Rast., 2003, vol. 50, no. 3, pp. 246–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bashkin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by P. Kuchina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkin, V.N., Galiulina, R.A. Accumulation of Heavy Metals in Vegetable Crops. Russ. Agricult. Sci. 48 (Suppl 1), S164–S173 (2022). https://doi.org/10.3103/S1068367422070035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367422070035

Keywords:

Navigation