Skip to main content

Advertisement

Log in

Niche Competition and Mineral Utilization between Weeds in Standing Crop Fields: A Systematic Study

  • PLANT PROTECTION
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Niche competition and minerals mobilization control different weed species distribution in cultivated crop fields. A study on standing mustard crop fields for consecutive three years in three blocks of Hooghly district of the Ganga delta, viz. Arambag, Balagarh, and Dhaniyakhali in West Bengal represented a quantitative estimation of weed diversity controlling the available nutrient conditions in the soil. Ecological parameters and diversity indexes indicated that Cyanodon dactylon (Poaceae) was the dominant weed with less than 70% association in the entire ecosystem. The capacities to avail resources like phosphorus, organic matter and other salt ions favor niche stabilization of the weed species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Fosaa, A.M., Gould, W.A., Hermanutz, L., Hofgaard, A., Jónsdóttir, I.S., Jorgenson, J.C., Lévesque, E., Magnusson, B., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Rixen, C., Tweedie, C.E., and Walker, M.D., Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 2, pp. 448–452.

    Article  CAS  PubMed  Google Scholar 

  2. McIntyre, P.J., Thorne, J.H., Dolanc, C.R., Flint, A.L., Flint, L.E., Kelly, M., and Ackerly, D.D., Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 5, pp.

  3. Stevens, F.R., Gaughan, A.E., Linard, C., and Tatem, A.J., Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data, PLoS ONE, 2015, vol. 10, no. 2. https://doi.org/10.1073/pnas.1410186112

  4. Ockendon, N., Baker, D.J., Carr, J.A., White, E.C., Almond, R.E., Amano, T., Bertram, E., Bradbury, R.B., Bradley, C., Butchart, S.H., Doswald, N., Foden, W., Gill, D.J., Green, R.E., Sutherland, W.J., Tanner, E.V., and Pearce-Higgins, J.W., Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects, Glob. Chang. Biol., 2014, vol. 20, no. 7, pp. 2221–2229.

    Article  PubMed  Google Scholar 

  5. Parmesan, C. and Hanley, M.E., Plants and climate change: Complexities and surprises, Ann. Bot., 2015, vol. 116, no. 6, pp. 849–864. https://doi.org/10.1093/aob/mcv169

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thackeray, S.J., Henrys, P.A., Hemming, D., Bell, J.R., Botham, M.S., Burthe, S., Helaouet, P., Johns, D.G., Jones, I.D., Leech, D.I., Mackay, E.B., Massimino, D., Atkinson, S., Bacon, P.J., Brereton, T.M., et al., Phenological sensitivity to climate across taxa and trophic levels, Nature, 2016, vol. 535, no. 7611, pp. 241–245. https://doi.org/10.1038/nature18608

    Article  CAS  PubMed  Google Scholar 

  7. Mohandass, D., Campbell, M.J., Hughes, A.C., Mammides, C., and Davidar, P., The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches, Acta Oecol., 2017, vol. 83, pp. 1–14. https://doi.org/10.1016/j.actao.2017.06.004

    Article  Google Scholar 

  8. Nkoba, R., Owen, M.D.K., and Swanton, C.J., Weed abundance, distribution, diversity and community analyses, Weed Sci., 2015, vol. 63. https://doi.org/10.1614/WS-D-13-00075.1

  9. Acebey, A., Gradstein, S.R., and Krömer, T., Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia, J. Trop. Ecol., 2003, vol. 19, pp. 9–18. https://doi.org/10.1017/S026646740300302X

    Article  Google Scholar 

  10. Solvent Extractos’ Association of India, Executive Summary Rapeseed-1 Mustard Crop Survey 2016–17, New Delhi, 2017.

  11. Chaubey, O.P., Prasad, R., and Mishra, G.P., Studies of teak plantation and mixed natural forest in Madhya Pradesh. I. Phytosociology, distribution, species diversity and quantitative parameters of tree species, J. Trop. For., 1988, vol. 4, pp. 22–35.

    Google Scholar 

  12. Misra, R., Ecology Work Book, Oxford & IBH Publishing Co., 1968.

  13. Simpson, E.H., Measurement of diversity, Nature, 1949, vol. 163, p. 688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  14. Shannon, C.E. and Weaver, W., A Mathematical Theory of Communication, University Illinois Press, 1963.

    Google Scholar 

  15. Pielou, E.C., Species diversity and pattern diversity of in the study of ecological succession, J. Theor. Biol., 1966, vol. 10, pp. 370–383. https://doi.org/10.1016/0022-5193(66)90133-0

    Article  CAS  PubMed  Google Scholar 

  16. Cody, M.L., Bird diversity components within and between habitats in Australia, in Species Diversity in Ecological Communities: Historical and Geographical Perspectives, Ricklefs, R.E. and Schluter, D., Eds., Chicago, IL: University of Chicago Press, 1993, pp. 147–158.

    Google Scholar 

  17. Sørensen, T.A., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons, K. Dan. Vidensk. Selsk. Biol. Skr., 1948, vol. 5, pp. 1–34.

    Google Scholar 

  18. Gotelli, N.J. and Abele, L.G., Community patterns of coral-associated decapods, Arine Ecol., Prog. Ser., 1983, vol. 13, pp. 131–139. http://www.int-res.com/articles/meps/13/m013p131.pdf.

    Book  Google Scholar 

  19. Basak, R.K., Soil Testing & Recommendation, Kalyani Publ., 2006.

    Google Scholar 

  20. Sarkar, D.K. and Haldar, A., Physical and Chemical Methods of Soil Analysis, New Age Int. Publ., 2005.

    Google Scholar 

  21. Chanda, S. and Palit, D., Plant diversity indices and pedological characteristics of Ragiroom Beat, Senchal West Zone Forest Range, Darjeeling, West Bengal, India, Pleione, 2009, vol. 3, no. 1, pp. 50–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekananda Mandal.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajsekhar Adhikary, Vivekananda Mandal Niche Competition and Mineral Utilization between Weeds in Standing Crop Fields: A Systematic Study. Russ. Agricult. Sci. 46, 476–483 (2020). https://doi.org/10.3103/S106836742005002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106836742005002X

Keywords: