Skip to main content

Advertisement

Log in

Simulation of Canopy Cover, Soil Water Content and Yield Using FAO-AquaCrop Model under Deficit Irrigation Strategies

  • MELIORATION
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

The model was used to simulate tomato green canopy (CC), soil water (SWC) and final yield under deficit irrigation regimes as 1.25, 1.00, 0.75 and 0.50 percentages of crop evapotranspiration (ETc). The model was calibrated by used an experimental data and fine-tune to some conservative crop parameters. The NRMSEs in simulated CC and SWC in different treatments were 4.1–19.6 and 6.3–14.1%, respectively, that corresponds to overall averages of 0.92 and 0.84 for R2 in CC and SWC. In exception to severe water stress treatments, the model showed overestimation trend on biomass and yield, and proved satisfactory performance. The maximum simulated biomass and yield was 12.88 and 6.04 t/ha, respectively. The lower values in yield and biomass belong to less water applied treatments, that shows the model accuracy declines in high water deficiency. Simulated biomass WUEs varied from 2.26 to 3.73 kg/m3, likewise the yield WUEs varied from 1.06 to 1.71 kg/m3. The higher WUEs obtained in less water applied treatments, obviously, the WUE increases when applications of water decreased. The findings of water saving potential (WSP), recommended 0.75 of ETc to saved 25.09% of water with only 12.00 and 15.52% reduction in measured and simulated yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Abdalhi, M.A., Cheng, J., Feng, S., and Yi, G., Performance of drip irrigation and nitrogen fertilizer in irrigation water saving and nitrogen use efficiency for waxy maize (Zea mays L.) and cucumber (Cucumis sativus L.) under solar greenhouse, Grassl. Sci., 2016, vol. 62, no. 3, pp. 174–187.

    Article  Google Scholar 

  2. Abrha, B., Delbecque, N., Raes, D., Tsegay, A., Todorovic, M., Heng, L.E.E., Vanutrecht, E., Geerts, S.A.M., Garcia-Vila, M., and Deckers, S., Sowing strategies for barley (Hordeum vulgare L.) based on modelled yield response to water with AquaCrop, Exp. Agric., 2012, vol. 48, no. 2, pp. 252–271.

    Article  Google Scholar 

  3. Ahmadi, S.H., Mosallaeepour, E., Kamgar-Haghighi, A.A., and Sepaskhah, A.R., Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements, Water Resour. Manage., 2015, vol. 29, no. 8, pp. 2837–2853.

    Article  Google Scholar 

  4. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrig. Drain. Pap., 1998, no. 56, pp. 1–333.

  5. Amiri, E., Rezaei, M., Rezaei, E.E., and Bannayan, M., Evaluation of Ceres-Rice, Aquacrop and Oryza 2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies, J. Plant Nutr., 2014, vol. 37, no. 11, pp. 1749–1769.

    Article  CAS  Google Scholar 

  6. Araya, A., Habtu, S., Hadgu, K.M., Kebede, A., and Dejene, T., Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare), Agric. Water Manage., 2010, vol. 97, no. 11, pp. 1838–1846.

    Article  Google Scholar 

  7. Domínguez, A., Tarjuelo, J.M., De Juan, J.A., López-Mata, E., Breidy, J., and Karam, F., Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model, Agric. Water Manage., 2011, vol. 98, no. 9, pp. 1451–1461.

    Article  Google Scholar 

  8. Doorenbos, J. and Kassam, A.H., Yield response to water, FAO Irrig. Drain. Pap., 1979, no. 33.

  9. Farahani, H.J., Izzi, G., and Oweis, T.Y., Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton, Agron. J., 2009, vol. 101, no. 3, pp. 469–476.

    Article  Google Scholar 

  10. Flores-Gallardo, H., Ojeda-Bustamante, W., Flores-Magdaleno, H., Sifuentes-Ibarra, E., and Mejia-Saenz, E., Simulation of corn (Zea mays L.) yield in Northern Sinaloa using the AquaCrop model, Agrocienc.-Mex., 2013, vol. 47, pp. 347–359.

    Google Scholar 

  11. García-Vila, M., Fereres, E., Mateos, L., Orgaz, F., and Steduto, P., Deficit irrigation optimization of cotton with AquaCrop, Agron. J., 2009, vol. 101, no. 3, pp. 477–487.

    Article  Google Scholar 

  12. Gardner, W.H., Water content, in Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, Klute, A., Ed., Madison, WI: American Society of Agronomy, 1986, 2nd ed., pp. 363–382.

    Google Scholar 

  13. Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J.A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., and Mamani, J., Simulating yield response of quinoa to water availability with AquaCrop, Agron. J., 2009, vol. 101, no. 3, pp. 499–508.

    Article  Google Scholar 

  14. Greaves, G.E. and Wang, Y.-M., Assessment of FAO AquaCrop model for simulating maize growth and productivity under deficit irrigation in a tropical environment, Water, 2016, vol. 8, no. 12, p. 557.

    Article  Google Scholar 

  15. Heng, L.K., Evett, S.R., Howell, T.A., and Hsiao, T.C., Calibration and testing of FAO AquaCrop model for rainfed and irrigated maize, Agron. J., 2009, vol. 101, pp. 488–498.

    Article  Google Scholar 

  16. Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E., AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize, Agron. J., 2009, vol. 101, no. 3, pp. 448–459.

    Article  Google Scholar 

  17. Iqbal, M.A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., and del Rio, S., Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation, Agric. Water Manage., 2014, vol. 135, pp. 61–72.

    Article  Google Scholar 

  18. Jamieson, P.D., Porter, J.R., and Wilson, D.R., A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand, Field Crops Res., 1991, vol. 27, no. 4, pp. 337–350.

    Article  Google Scholar 

  19. Karunaratne, A.S., Azam-Ali, S.N., Izzi, G., and Steduto, P., Calibration and validation of FAO-AquaCrop model for irrigated and water deficient bambara groundnut, Exp. Agric., 2011, vol. 47, no. 3, pp. 509–527.

    Article  Google Scholar 

  20. Katerji, N., Campi, P., and Mastrorilli, M., Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region, Agric. Water Manage., 2013, vol. 130, pp. 14–26.

    Article  Google Scholar 

  21. Khoshravesh, M., Mostafazadeh-Fard, B., Heidarpour, M., and Kiani, A.R., AquaCrop model simulation under different irrigation water and nitrogen strategies, Water Sci. Technol., 2013, vol. 67, no. 1, pp. 232–238.

    Article  Google Scholar 

  22. Kumar, P., Sarangi, A., Singh, D.K., and Parihar, S.S., Evaluation of AquaCrop model in predicting wheat yield and water productivity under irrigated saline regimes, Irrig. Drain., 2014, vol. 63, no. 4, pp. 474–487.

    Article  Google Scholar 

  23. Lin, L., Zhang, B., and Xiong, L., Evaluating yield response of paddy rice to irrigation and soil management with application of the AquaCrop model, Trans. ASABE, 2012, vol. 55, no. 3, pp. 839–848.

    Article  Google Scholar 

  24. Linker, R., Ioslovich, I., Sylaios, G., Plauborg, F., and Battilani, A., Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato, Agric. Water Manage., 2016, vol. 163, pp. 236–243.

    Article  Google Scholar 

  25. Loague, K.M. and Green, R.E., Statistical and graphical methods for evaluating solute transport models: Overview and application, J. Contam. Hydrol., 1991, vol. 7, no. 1, pp. 51–73.

    Article  CAS  Google Scholar 

  26. Mebane, V.J., Day, R.L., Hamlett, J.M., Watson, J.E., and Roth, G.W., Validating the FAO AquaCrop model for rainfed maize in Pennsylvania, Agron. J., 2013, vol. 105, no. 2, pp. 419–427.

    Article  Google Scholar 

  27. Mhizha, T., Geerts, S., Vanuytrecht, E., Makarau, A., and Raes, D., Use of the FAO AquaCrop model in developing sowing guidelines for rainfed maize in Zimbabwe, Water SA, 2014, vol. 40, no. 2.

  28. Pawar, G.S., Kale, M.U., and Lokhande, J.N., Response of AquaCrop model to different irrigation schedules for irrigated cabbage, Agric. Res., 2017, vol. 6, no. 1, pp. 73–81.

    Article  Google Scholar 

  29. Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E., AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description, Agron. J., 2009a, vol. 101, no. 3, pp. 438–447.

    Article  Google Scholar 

  30. Raes, D., Steduto, P., Hsiao, T.C., and Fereres, E., AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: Reference Manual Annexes. 2009b, http://www.fao.org/nr/water/aquacrop.html.

  31. Rinaldi, M., Garofalo, P., Rubino, P., and Steduto, P., Processing tomatoes under different irrigation regimes in Southern Italy: Agronomic and economic assessments in a simulation case study, J. Agrometeorol., 2011, vol. 3, pp. 39–56.

    Google Scholar 

  32. Saab, M.T.A., Todorovic, M., and Albrizio, R., Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?, Agric. Water Manage., 2015, vol. 147, pp. 21–33.

    Article  Google Scholar 

  33. Salemi, H., Soom, M.A.M., Mousavi, S.F., Ganji, A., Lee, T.S., Yusoff, M.K., and Verdinejad, V.R., Irrigated silage maize yield and water productivity response to deficit irrigation in an arid region, Pol. J. Environ. Stud., 2011, vol. 20, no. 5, pp. 1295–1303.

    Google Scholar 

  34. Shrestha, N., Raes, D., Vanuytrecht, E., and Sah, S.K., Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling, Agric. Water Manage., 2013, vol. 122, pp. 53–62.

    Article  Google Scholar 

  35. Steduto, P., Hsiao, T.C., Raes, D., and Fereres, E., AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles, Agron. J., 2009, vol. 101, no. 3, pp. 426–437.

    Article  Google Scholar 

  36. Stricevic, R., Cosic, M., Djurovic, N., Pejic, B., and Maksimovic, L., Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower, Agric. Water Manage., 2011, vol. 98, no. 10, pp. 1615–1621.

    Article  Google Scholar 

  37. Todorovic, M., Albrizio, R., Zivotic, L., Saab, M.T.A., Stöckle, C., and Steduto, P., Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes, Agron. J., 2009, vol. 101, no. 3, pp. 509–521.

    Article  Google Scholar 

  38. Tsegay, A., Raes, D., Geerts, S., Vanuytrecht, E., Abraha, B., Deckers, J., Bauer, H., and Gebrehiwot, K., Unravelling crop water productivity of tef (Eragrostis tef (Zucc.) Trotter) through AquaCrop in northern Ethiopia, Exp. Agric., 2012, vol. 48, no. 2, pp. 222–237.

    Article  Google Scholar 

  39. Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., Heng, L.K., Vila, M.G., and Moreno, P.M., AquaCrop: FAO’s crop water productivity and yield response model, Environ. Modell. Software, 2014, vol. 62, pp. 351–360.

    Article  Google Scholar 

  40. Wellens, J., Raes, D., Traore, F., Denis, A., Djaby, B., and Tychon, B., Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment, Agric. Water Manage., 2013, vol. 127, pp. 40–47.

    Article  Google Scholar 

  41. Xiangxiang, W., Quanjiu, W., Jun, F., and Qiuping, F., Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China’s Loess Plateau, Agric. Water Manage., 2013, vol. 129, pp. 95–104.

    Article  Google Scholar 

  42. Zeleke, K.T., Luckett, D., and Cowley, R., Calibration and testing of the FAO AquaCrop model for canola, Agron. J., 2011, vol. 103, no. 6, pp. 1610–1618.

    Article  Google Scholar 

  43. Zhang, W., Liu, W., Xue, Q., Chen, J., and Han, X., Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China, Water Sci. Technol., 2013, vol. 68, no. 4, pp. 821–828.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Our thanks and gratitude for editors and reviewers for their helpful suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohmed A. M. Abdalhi.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohmed A. M. Abdalhi, Jia, Z., Luo, W. et al. Simulation of Canopy Cover, Soil Water Content and Yield Using FAO-AquaCrop Model under Deficit Irrigation Strategies. Russ. Agricult. Sci. 46, 279–288 (2020). https://doi.org/10.3103/S106836742003012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106836742003012X