Skip to main content
Log in

Milk Fatty Acids Estimation by Mid-Infrared Spectroscopy as Proxy for Prediction of Methane Emission in Dairy Cows

  • ANIMAL HUSBANDRY
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Ruminant enteric methane (CH4) emission contributes to global warming. Current enteric CH4 measurement techniques, such as whole-animal chambers and tracer gas techniques require complex instrumentation and, thus, are limited in their use. Thus, a simple, robust and inexpensive measurement technique applicable on a large scale to estimate CH4 emission from dairy cattle would therefore be valuable. Milk fatty acid (MFA) composition has been suggested as a means of predicting enteric CH4 output in lactating dairy cattle because of the common biochemical pathways among CH4 and fatty acids in the rumen. A summary of studies that investigated the predictive power of MFA composition for CH4 emission indicated good potential, with predictive power ranging between 47 and 95%. Until recently, gas chromatography (GC) was the principal method used to determine the MFA profile, but GC is unsuitable for routine analysis. This has led to the application of mid-infrared (MIR) spectroscopy. The major advantages of using MIR spectroscopy to predict CH4 emission include its simplicity and potential practical application at large scale. Disadvantages include the inability to predict important MFA for CH4 prediction, and the moderate predictive power for CH4 emission. It may not be sufficient to predict CH4 emission based on MIR alone. Integration with other factors, like feed intake, nutrient composition of the feed, parity, and lactation stage may improve the prediction of CH4 emission using MIR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Castro-Montoya, J., Bhagwat, A.M., Peiren, N., De Campeneere, S., De Baets, B., and Fievez, B., Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle, Anim. Feed. Sci. Technol., 2011, vol. 166, pp. 596–602.

    Article  CAS  Google Scholar 

  2. Chilliard, Y., Ferlay, A., Mansbridge, R.M., and Doreau, M., Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids, Ann. Zootech., 2000, vol. 49, pp. 181–205.

    Article  CAS  Google Scholar 

  3. Chilliard, Y., Martin, C., Rouel, J., and Doreau, M., Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output, J. Dairy Sci., 2009, vol. 92, pp. 5199–5211.

    Article  CAS  PubMed  Google Scholar 

  4. Church, D.C., The Ruminant Animal: Digestive Physiology and Nutrition, Englewood Cliffs, New Jersey: Prentice Hall, 1988, 2nd ed.

    Google Scholar 

  5. Couvreur, S., Hurtaud, C., Marnet, P.G., Faverdin, P., and Peyraud, J.L., Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet, J. Dairy Sci., 2007, vol. 90, pp. 392–403.

    Article  CAS  PubMed  Google Scholar 

  6. De Marchi, M., Toffanin, V., Cassandro, M., and Penasa, M., Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits, J. Dairy Sci., 2014, vol. 97, pp. 1171–1186.

    Article  CAS  PubMed  Google Scholar 

  7. Dehareng, F., Delfosse, C., Froidmont, E., Soyeurt, H., Martin, C., and Gengler, N., Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows, Animal, 2012, vol. 6, pp. 1694–1701.

    Article  CAS  PubMed  Google Scholar 

  8. Demeyer, D.I., and Van Nevel, C.J., Methanogenesis, an integrated part of carbohydrate fermentation and its control, in Digestion and Metabolism in the Ruminant, McDonald, I.W., and Warner, A.C.I., Eds., Armidale: University of New England, 1975, pp. 366–382.

    Google Scholar 

  9. Dijkstra, J., Van Zijderveld, S.M., Apajalahti, J.A., Bannink, A., Gerrits, W.J.J., Newbold, J.R., Perdok, H.B., and Berends, H., Relationships between methane production and milk fatty acid profiles in dairy cattle, Anim. Feed Sci. Technol., 2011, vols. 166–167, pp. 590–595.

    Article  CAS  Google Scholar 

  10. Dijkstra, J., Van Gastelen, S., Antunes-Fernandes, E.C., Warner, D., Hatew, B., Klop, G., Podesta, S.C., Van Lingen, H.J., Hettinga, K.A., and Bannink, A., Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets, Anim. Prod. Sci., 2016, vol. 56, pp. 541–548.

    Article  CAS  Google Scholar 

  11. FAO, Livestock Long Shadow: Environmental Issues and Options, Rome: Food and Agriculture Organization, 2006.

  12. Fievez, V., Colman, E., Castro-Montoya, J.M., Stefanov, I., and Vlaeminck, B., Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update, Anim. Feed Sci. Technol., 2012, vol. 172, pp. 51–65.

    Article  CAS  Google Scholar 

  13. Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., Vanrobays, M.L., Lainé, A., Vanderick, S., Grelet, C., Vanlierde, A., Froidmont, E., and Dardenne, P., Capitalizing on fine milk composition for breeding and management of dairy cows, J. Dairy Sci, 2016, vol. 99, pp. 4071–4079.

    Article  CAS  PubMed  Google Scholar 

  14. Grainger, C., and Beauchemin, K.A., Can enteric methane emissions from ruminants be lowered without lowering their production?, Anim. Feed Sci. Technol., 2011, vols. 166–167, pp. 308–320.

    Article  CAS  Google Scholar 

  15. Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., and Tricarico, J.M., Mitigation of methane and nitrous oxide emissions from animal operations: A review of enteric methane mitigation options, J. Anim. Sci., 2013a, vol. 91, pp. 5045–5069.

    Article  CAS  PubMed  Google Scholar 

  16. Hungate, R.E., The Rumen and Its Microbes, London: Academic Press, 1966, 1st ed.

    Google Scholar 

  17. Johnson, K.A., and Johnson, D.E., Methane emissions from cattle, J. Anim. Sci., 1995, vol. 73, pp. 2483–2492.

    Article  CAS  Google Scholar 

  18. Methagene, METHAGENE EU COST Action FA1302 on Largescale Methane Measurements on Individual Ruminants for Genetic Evaluations, 2013. http://www.methagene.eu/. Accessed November 17, 2016.

  19. Mohammed, R., McGinn, S.M., and Beauchemin, K.A., Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds, J. Dairy Sci., 2011, vol. 94, pp. 6057–6068.

    Article  CAS  PubMed  Google Scholar 

  20. Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., and Kebreab, E., Prediction of enteric methane emissions from cattle, Glob. Change Biol., 2014, vol. 20, pp. 2140–2148.

    Article  Google Scholar 

  21. Moss, A.R., Jouany, J.P., and Newbold, J., Methane production by ruminants: Its contribution to global warming, Ann. Zootech., 2000, vol. 49, pp. 231–253.

    Article  CAS  Google Scholar 

  22. Ramin, M., and Huhtanen, P., Development of equations for predicting methane emissions from ruminants, J. Dairy Sci., 2013, vol. 96, pp. 2476–2493.

    Article  CAS  PubMed  Google Scholar 

  23. Rico, D.E., Chouinard, P.Y., Hassanat, F., Benchaar, C., and Gervais, R., Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources, Animal, 2016, vol. 10, pp. 203–211.

    Article  CAS  PubMed  Google Scholar 

  24. Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., and Berry, D.P., Midinfrared prediction of bovine fatty acids across multiple breeds, production systems, and countries, J. Dairy Sci., 2011, vol. 94, pp. 1657–1667.

    Article  CAS  PubMed  Google Scholar 

  25. Van Gastelen, S., and Dijkstra, J., Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy, J. Sci. Food Agric., 2016, vol. 96, pp. 3963–3968.

    Article  CAS  PubMed  Google Scholar 

  26. Van Gastelen, S., Antunes-Fernandes, E.C., Hettinga, K.A., Klop, G., Alferink, S.J.J., Hendriks, W.H., and Dijkstra, J., Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn-silage based diets, J. Dairy Sci., 2015, vol. 98, pp. 1915–1927.

    Article  CAS  PubMed  Google Scholar 

  27. Van Lingen, H.J., Crompton, L.A., Hendriks, W.H., Reynolds, C.K., and Dijkstra, J., Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle, J. Dairy Sci., 2014, vol. 97, pp. 7115–7132.

    Article  CAS  Google Scholar 

  28. Vanlierde, A., Vanrobays, M.L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., Lewis, E., Deighton, M.H., Grandl, F., Kreuzer, M., Grendler, B., Dardenne, P., and Gengler, N., Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra, J. Dairy Sci., 2015, vol. 98, pp. 5740–5747.

    Article  CAS  PubMed  Google Scholar 

  29. Vanrobays, M.L., Bastin, C., Vandenplas, J., Hammami, H., Soyeurt, H., Vanlierde, A., Dehareng, F., Froidmont, E., and Gengler, N., Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra, J. Dairy Sci., 2016, vol. 99, pp. 7247– 7260.

    Article  CAS  PubMed  Google Scholar 

  30. Vlaeminck, B., Fievez, V., Cabrita, A.R.J., Fonseca, A.J.M., and Dewhurst, R.J., Factors affecting odd- and branched-chain fatty acids in milk: A review, Anim. Feed Sci. Technol., 2006, vol. 131, p. 389–417.

    Article  CAS  Google Scholar 

  31. Williams, S.R.O., Williams, B., Moate, P.J., Deighton, M.H., Hannah, M.C., and Wales, W.J., Methane emissions of dairy cows cannot be predicted by the concentrations of C8:0 and total C18 fatty acids in milk, Anim. Prod. Sci., 2014, vol. 54, pp. 1757–1761.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Okpara.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okpara, M.O. Milk Fatty Acids Estimation by Mid-Infrared Spectroscopy as Proxy for Prediction of Methane Emission in Dairy Cows. Russ. Agricult. Sci. 45, 386–392 (2019). https://doi.org/10.3103/S1068367419040116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367419040116

Keywords: