Interaction between CO2 elevation and nitrogen metabolism in two varieties of Guar (Cyamopsis tetragonoloba) plants

Abstract

The aim of the experimental study is to analyse the consequence of carbon dioxide elevation on activity of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamate synthetase (GOGAT; EC 1.4.1.13) in leguminous Cyamopsis tetragonoloba leaves. Plants were exposed to different atmospheric carbon dioxide concentrations 300 ppm (ambient) and 490 ppm (an elevated) conditions. A decrease in activity of Nitrate Reductase (NR), Nitrite Reductase (NiR), Glutamate Synthetase (GOGAT) was found in elevated condition when compared to ambient condition. Plant nitrogen on dry weight basis was found to decrease under elevation with no significant change in soil nitrogen. Soil pH was found to change significantly under elevation, thus showing a decline in pH and promoting soil acidiosis. Total plant fresh weight (FW) and total plant dry weight (DW), Leaf area/cm2 were found increased in elevated condition. Thus, in Cyamopsis tetragonoloba plant it can be concluded that under carbon dioxide elevation Nitrate reductase, Nitrite reductase and Glutamate synthetase activity is suppressed due to a reduced amount of nitrate translocation and NADH availability for reduction in plant which is correlated with reduction in plant total nitrogen content where as plant growth and biomass is enhanced due to higher carbon fixation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Idso, S.B., The climatological significance of a doubling of Earth’s atmospheric CO2 concentration, Science, 1980, vol. 207, pp. 1462–1463.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Lawlor, D.W. and Mitchell, R.A.C., The effect of increasing CO2 on crop photosynthesis and productivity. A review of field studies, Plant Cell Environ., 1991, vol. 14, pp. 803–814.

    Article  Google Scholar 

  3. 3.

    Woodward, F., Potential impacts of global elevated CO2 concentrations on plants, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 207–211.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tolbert, N.E. and Zelitch, I., in The Response of Plant to Rising Levels of Atmospheric Carbon Dioxide, Lemon, E.R., Ed., Westview Press, 1983, pp. 21–64.

  5. 5.

    Das, M., Pal, M., Zaidi, P.H., Raj, A., and Sengupta, U.K., Growth response of mung bean to elevated CO2, Indian J. Plant Physiol., 2000, vol. 5, pp. 137–140.

    Google Scholar 

  6. 6.

    Marschner, H., Mineral Nutrition of Higher Plants, San Diego, CA: Academic Press, 1995, 2nd ed.

    Google Scholar 

  7. 7.

    Reich, P.B., Hungate, B.A., and Luo, Y.Q., Carbonnitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 611–636.

    Article  Google Scholar 

  8. 8.

    De la Mata, L., Cabello, P., De la Haba, P., and Aguera, E. Growth under elevated atmospheric CO2 concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants, J. Plant Physiol., 2012, vol. 169, pp. 1392–1400.

    Article  PubMed  Google Scholar 

  9. 9.

    Schildhauer, J., Wiedemuth, K., and Humbeck, K., Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-keto glutarate reductase/ saccharopine dehydrogenase, Plant Biol., 2008, vol. 10, pp. 76–84.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ferrario-Mery, S, Thibaud, M.C., Betsche, T., Valadier, M.H., and Foyer, C.H., Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture, Planta, 1997, vol. 202, pp. 510–521.

    CAS  Article  Google Scholar 

  11. 11.

    Pettersson, R. and Mac Donald, J.S., Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2, Photosynth. Res., 1994, vol. 39, pp. 389–400.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Long, S.P., Ainsworth, E.A., Rogers, A., and Ort, D.R., Rising atmospheric carbon dioxide: Plants FACE the future, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 591–628.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melo-Oliveira, R., and Coruzzi, G.M., The moleculargenetics of nitrogen assimilation into amino acids in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, pp. 569–593.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Agüera, E., Cabello, R., Cabello, P. and de la Haba, P., Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants, J. Plant Physiol., 2006, vol. 163, pp. 809–817.

    Article  PubMed  Google Scholar 

  15. 15.

    La Rue, T.A. and Patterson, G.T., How much nitrogen do legumes fix?, in Advances in Agronomy, Sánchez, P.A. and Salinas, J.G., Eds., New York: Academic Press, 1981, pp.15–38.

    Google Scholar 

  16. 16.

    Sharma, A. and Sen Gupta, U.K., Carbon dioxide enrichment effect on photosynthesis and related enzymes in Vigna radiata L. Wilezek, Indian J. Plant Physiol., 1990, vol. 33, pp. 340–346.

    Google Scholar 

  17. 17.

    Maevskaya, S.N., Andreeva, T.F., Voedudskaya, S.Y.U., and Cherkanova, S., Effect of high carbon dioxide concentration on photosynthesis and nitrogen metabolism in leaf mustard plants, Fiziol. Rast., 1990, vol. 37, pp. 921–927.

    CAS  Google Scholar 

  18. 18.

    Purvis, A.C., Peters, D.B., and Hageman, R.H., Effect of carbon dioxide on nitrate accumulation and nitrate reductase induction in corn seedlings, Plant Physiol., 1974, vol. 53, pp. 934–941.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hocking, P.J. and Meyer, C.P., CO2 enrichment decreases critical nitrate and nitrogen concentration in wheat, J. Plant Nutr., 1991, vol. 14, pp. 571–584.

    Article  Google Scholar 

  20. 20.

    Hoff, T., Truong, H.-N., and Caboche, M., The use of mutant and transgenic plants to study nitrate assimilation, Plant Cell Environ., 1994, vol. 17, pp. 489–506.

    CAS  Article  Google Scholar 

  21. 21.

    Madan, P., Karthikeyapandian, V., Vanita, J., Srivastava, C.A., Anupam, R., and Sengupta, U.K., Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2, Agric. Ecosyst. Environ., 2004, vol. 101, pp. 31–38.

    Article  Google Scholar 

  22. 22.

    Groat, R.G. and Vance, C.P., Root and nodule enzymes of ammonia assimilation in two plants-conditioned symbiotically in effective genotypes of alfalfa (Medicago sativa L.), Plant Physiol., 1982, vol. 69, pp. 614–618.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Taub, R.D. and Wang, X., Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses, J. Integr. Plant Biol., 2008, vol. 50, no. 11, pp. 1365–1374.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Amandson, R., Stern, L., Baisden, T., and Wang, Y., The isotopic composition of soil and soil-respired CO2, Geoderma, 1998, vol. 82, pp. 83–114.

    Article  Google Scholar 

  25. 25.

    Kinsman, E.A., Lewis, C., Davis, M.S., Young, J.E., Francis, D., Villhar, B., and Ougham, H.J., Elevated CO2 stimulates cell to divide in equal meristems: A differential effect in two natural populations of Dactylis glomerata, Plant Cell Environ., 1997, vol. 20, pp. 1309–1315.

    Article  Google Scholar 

  26. 26.

    Sasek, T.W. and Strain, B.R., Effect of CO2 enrichment on the growth and morphology of a native and introduced honey suckle vine, Am. J. Bot., 1991, vol. 78, pp. 69–75.

    CAS  Article  Google Scholar 

  27. 27.

    Drake, B.G., Gonzalez-Meler, M.A., and Long, S.P., More efficient plants: A consequence of rising atmospheric CO2?, Annu. Rev. Plant Physiol. Plant Mol Biol., 1997, vol. 48, pp. 609–639.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Plaut, Z. and Littan, A., Interaction between Photosynthetic CO2 Fixation Products and Nitrate Reduction in Spinach and Wheat Leaves, Amsterdam: Elsevier, 1974, pp. 1507–1516.

    Google Scholar 

  29. 29.

    Natali, S.M., Sañudo-Wilhelmy, S.A., and Lerdau, M.T. Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests, Plant Soil, 2009, vol. 314, no. 1, pp. 197–210. doi 10.1007/s11104-008-9718-x

    CAS  Article  Google Scholar 

  30. 30.

    Foyer, C.H., Bloom, A., Queval, G., and Noctor, G., Photorespiratory metabolism: Genes, mutants, energetics, and redox signalling, Annu. Rev. Plant Biol., 2009, vol. 60, pp. 455–484.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Lea, P.J. and Ireland, R.J., Nitrogen metabolism in higher plants, in Plant Amino Acids. Biochemistry and Biotechnology, Singh, B.J., Ed., Marcel Dekker, Inc., New York, 1999, pp. 1–47.

    Google Scholar 

  32. 32.

    Kumeleh, S.A., Sharmila, P., Uprety, C.D., and Saradhi, P.P., Effects of elevated CO2 on soil physicochemical characteristics under free air CO2 enrichment (FACE) technology, Earth Environ. Sci., 2009, vol. 6. doi 10.1088/1755-1307/6/9/292045

  33. 33.

    Neung, O.H., Richter, D., and Daniel, R.J., Soil acidification induced by elevated atmospheric CO2, Global Change Biol., 2004, vol. 10, pp. 1936–1946. 2486.2004.00864.x doi 10.1111/j.1365-510

    Article  Google Scholar 

  34. 34.

    Stitt, M. and Krapp, A., The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background, Plant. Cell Environ., 1999, vol. 22, pp. 583–621.

    CAS  Article  Google Scholar 

  35. 35.

    Huijuan Guo, Yucheng Sun, Yuefei Li, Xianghui Liu, Qin Ren, Keyan Zhu-Salzman, and Feng Ge, Elevated CO2 modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil, PLoS ONE, 2013, vol. 8, no. 12. doi 10.1371/journal. pone.0081373

    Google Scholar 

  36. 36.

    Taub, D., Miller, B., and Allen, H., Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis, Glob. Change Biol., 2008, vol. 14, pp. 565–575.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sonali Mehrotra.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehrotra, S., Praveen, A., Tripathi, K.P. et al. Interaction between CO2 elevation and nitrogen metabolism in two varieties of Guar (Cyamopsis tetragonoloba) plants. Russ. Agricult. Sci. 43, 225–233 (2017). https://doi.org/10.3103/S1068367417030144

Download citation

Keywords

  • NR
  • NiR
  • GOGAT
  • Guar
  • FW
  • DW