Ultrastructural organization of the domains in the cell nucleus of dicotyledonous and monocotyledonous plants under abiotic stress


The transformation of the structural organization of interphase nuclei of a plant cell, depending on the type of tissue, ploidy, and the action of abiotic factors of the medium, has been studied by light and transmission electron microscopy. It is shown that the location and the quantitative relationship between condensed and decondensed chromatin, the presence and localization of nuclear bodies in the plant nucleus, and the presence of invaginations of the nuclear membrane and inclusions depend on the tissue type and cell age as well as the intensity, time, and type of exposure to abiotic factors. Examples of different degrees of chromatin condensation in one plant organism are given. It has been established that the degree of chromatin condensation and decondensation, the state of other domains and nonspecific inclusions of the cell nucleus can be artificially modeled for research purposes or subsequent modification. The issue of application of such technologies for the creation and selection of stable forms of agricultural plants taking into account the controlled modification of their genome is discussed. A possible mechanism for incorporation of nonspecific inclusions in a nuclear compartment is proposed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Shaw, P.J. and Brown, J.W.S., Plant nuclear bodies, Curr. Opin. Plant Biol., 2004, vol. 7, no. 6, p. 614–620.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chentsov, Yu.S. and Polyakov, V.Yu., Ul’trastruktura kletochnogo yadra (Ultrastructure of the Cell Nucleus), Moscow: Nauka, 1974.

    Google Scholar 

  3. 3.

    Smoyer, C.J. and Jaspersen, S.L., Breaking down the wall: The nuclear envelope during mitosis, Curr. Opin. Plant Biol., 2014, vol. 26, pp.1.

    CAS  Article  Google Scholar 

  4. 4.

    Meier, I. et al., Regulation of nuclear shape and size in plants, Curr. Opin. Plant Biol., 2016, vol. 40, pp. 114–123.

    CAS  Article  Google Scholar 

  5. 5.

    Rybaczek, D., Ultrastructural changes associated with the induction of premature chromosome condensation in Vicia faba root meristem cells, Plant Cell Rep., 2014, vol. 33, no. 9, pp. 1547–1564.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kuznetsova, M.A. and Sheval, E.V., Chromatin fbers: From classical descriptions to modern interpretation, Cell Biol. Int., 2016, vol. 40, no. 11, pp. 1140–1151.

    Article  PubMed  Google Scholar 

  7. 7.

    Lafontaine, J.G., Luck, B.T., and Dontigny, D., A cytochemical and radioautographic study of the ultrastructural organization of puff-like fbrillar structures in plant interphase nuclei (Allium porrum), J. Cell Sci., 1979, vol. 39, no. 1, pp. 13–27.

    CAS  PubMed  Google Scholar 

  8. 8.

    Zharskaya, O.O. and Zatsepina, O.V., Dynamics and mechanisms of nucleolus reorganization in mitosis, Tsitologiya, 2007, vol. 49, no. 5, pp. 355–369.

    Google Scholar 

  9. 9.

    Docquier, S., Tillemans, V., Deltour, R., and Motte, P., Nuclear bodies and compartmentalization of premRNA splicing factors in higher plants, Chromosoma, 2004, vol. 112, no. 5, pp. 255–266.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Bogolyubov, D.S., Perichromatin compartment of the cell nucleus, Tsitologiya, 2014, vol. 56, no. 6, pp. 399–409.

    Google Scholar 

  11. 11.

    Puvion, E. and Puvion-Dutilleul, F., Ultra-structure of the nucleus in relation to transcription and splicing: Roles of perichromatin fbrils and interchromatin granules, Exp. Cell Res., 1996, vol. 229, no. 2, pp. 217–225.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V., Domnina, L.V., Minin, A.A., Pletjushkina, O.Y., Saprunova, V.B., Skulachev, I.V., Tsyplenkova, V.G., Vasiliev, J.M., Yaguzhinsky, L.S., and Zorov, D.B., Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 2004, vol. 256, nos. 1–2, pp. 341–358.

    Article  PubMed  Google Scholar 

  13. 13.

    Adamakis, I.D.S., Eleftheriou, E.P., and Rost, T.L., Effects of sodium tungstate on the ul-trastructure and growth of pea (Pisum sativum) and cotton (Gossypium hirsutum) seedlings, Environ. Exp. Bot., 2008, vol. 63, no. 1, pp. 416–425.

    CAS  Article  Google Scholar 

  14. 14.

    Wise, R.R., The diversity of plastid form and function, in The Structure and Function of Plastids, Springer Netherlands, 2007, pp. 3–26.

    Google Scholar 

  15. 15.

    Lousa, C.D.M., Gershlick, D.C., and Denecke, J., Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors, Plant Cell, 2012, vol. 24, no. 5, pp. 1714–1732.

    Article  Google Scholar 

  16. 16.

    Normand, C., Correlative light and electron microscopy of nucleolar transcription in Saccharomyces cerevisiae, in The Nucleolus: Methods and Protocols, 2016, pp. 29–40.

    Google Scholar 

  17. 17.

    Sharma, A.K., Synchronization in plant cells—An introduction, Methods in Cell Science, 1999, vol. 21, no. 2, pp. 73–78.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Baranova, E.N. and Gulevich, A.A., Structural organization of nuclei and nucleoli of wheat shoot and root meristem during germination under alkaline pH conditions, Russ. Agric. Sci., 2009, vol. 35, no. 1, pp. 11–14.

    Article  Google Scholar 

  19. 19.

    Baranova, E.N., Gulevich, A.A., and Lavrova, N.V., Influence of acid pH of the environment on the structural organization of nuclei and nucleoli of cells of shoot and root meristems of wheat during germination, Izv. TSKhA, 2010, no. 2, pp. 44–51.

    Google Scholar 

  20. 20.

    Shckorbatov, Yu., The state of chromatin as an integrative indicator of cell stress, in New Developments in Chromatin Research, Simpson, N.M. and Stewart, V.J., Eds., New York: Nova Publishers, 2012, pp. 123–144.

    Google Scholar 

  21. 21.

    Trojer, P. and Reinberg, D., Facultative heterochromatin: Is there a distinctive molecular signature?, Mol. Cell, 2007, vol. 28, no. 1, pp. 1–13.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Chentsov, Yu.S., Vvedenie v kletochnuyu biologiyu: Obshchaya tsitologiya (Introduction to Cell Biology: General Cytology), Moscow: Akademkniga, 2005.

    Google Scholar 

  23. 23.

    Probst, A.V. and Scheid, O.M., Stress-induced structural changes in plant chromatin, Curr. Opin. Plant Biol., 2015, vol. 27, pp. 8–16.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kisurina-Evgenieva, O.P., Sutiagina, O.I., and Onishchenko, G.E., Biogenesis of micronuclei, Biochemistry (Moscow), 2016, vol. 81, no. 5, pp. 453–464.

    CAS  Article  Google Scholar 

  25. 25.

    Van Hautegem, T., Waters, A.J., Goodrich, J., and Nowack, M.K., Only in dying, life: Programmed cell death during plant development, Trends Plant Sci., 2015, vol. 20, no. 2, pp. 102–113.

    Article  PubMed  Google Scholar 

  26. 26.

    Chaban, I.A., Lazareva, E.M., Kononenko, N.V., and Polyakov, V.Y., Antipodal complex development in the embryo sac of wheat, Russ. J. Dev. Boil., 2011, vol. 42, no. 2, pp. 79–91.

    CAS  Article  Google Scholar 

  27. 27.

    Kunakh, V.A., Genomic variability of plant somatic cells. Variability in ontogenesis, Biopolim. Kletka, 1994, vol. 11, no. 6, pp. 5–35.

    Google Scholar 

  28. 28.

    Jackson, S. and Chen, Z.J., Genomic and expression plasticity of polyploidy, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 153–159.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bennett, M.D. and Leitch, I.J., Nuclear DNA amounts in angiosperms: Progress, problems and prospects, Ann. Bot., 2005, vol. 95, pp. 45–90.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Knight, C.A., Movinari, N.A., and Petrov, D.A., The large genome constraint hypothesis: Evolution, ecology and phenotype, Ann. Bot., 2005, vol. 95, pp. 177–190.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Baranova, E.N., Christov, N.K., Kurenina, L.V., Khaliluev, M.R., Todorovska, E.G., and Smirnova, E.A., Formation of atypical tubulin structures in plant cells as a nonspecifc response to abiotic stress, Bulg. J. Agric. Sci., 2016, vol. 22, no. 6, pp. 987–992.

    Google Scholar 

  32. 32.

    Pasyuga, O.S., The effect of microwave radiation and a weak magnetic field on the state of the cell membrane and the nucleus of pea cells (P. sativum), Vis. Khark. Nats. Agrar. Univ., Ser. Biol., 2014, no. 2, pp. 38–45.

    Google Scholar 

  33. 33.

    Gulevich, A.A., Baranova, E.N., Polyakov, V.Y., and Kharchenko, P.N., Ultrastructural evaluation of possible results of cell selection of Medicago sativa for NaCl, Russ. Agric. Sci., 2010, vol. 36, no. 2, pp. 100–104.

    Article  Google Scholar 

  34. 34.

    Baranova, E.N., Chaban, I.A., Kononenko, N.V., Shupletsova, O.N., Shirokich, I.G., and Polyakov, V.Y., Morphological and functional characteristics of the barley calluses tolerant to the toxic action of aluminum, Biol. Membr., 2015, vol. 32, no. 4, pp. 274–286.

    CAS  Google Scholar 

  35. 35.

    Baranova, E.N., Baranova, G.B., and Kharchenko, P.N., Effect of weak magnetic field and low positive temperature on chromatin and nucleolus ultrastructure of rye and barley, Russ. Agric. Sci., 2011, vol. 37, no. 6, pp. 453–461.

    Article  Google Scholar 

  36. 36.

    Heddle, J.A., Cimino, M.C., Hayashi, M., Romagna, F., Shelby, M.D., Tucker, J.D., and Macgregor, J.T., Micronuclei as an index of cytogenetic damage: Past, present, and future, Environ. Mol. Mutagen., 1991, vol. 18, no. 4, pp. 277–291.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bakeeva, L.E., Skulachev, V.P., Sudarikova, Y.V., and Tsyplenkova, V.G., Mitochondria enter the nucleus (one further problem in chronic alcoholism), Biochemistry (Moscow), 2001, vol. 66, no. 12, pp. 1335–1341.

    CAS  Article  Google Scholar 

  38. 38.

    Lazareva, E.M., Baranova, E.N., and Smirnova, E.A., Reorganization of the system of microtubules of the root cells of Medicago sativa in conditions of acclimation to osmotic and salt stresses, Tsitologiya, 2017, vol. 59, no. 1, pp. 34–44.

    Google Scholar 

  39. 39.

    Adamakis, I.D.S., Panteris, E., and Eleftheriou, E.P., The cortical microtubules are a universal target of tungsten toxicity among land plant taxa, J. Biol. Res., 2010, vol. 13, pp. 59–66.

    CAS  Google Scholar 

  40. 40.

    Todorovska, E.G., Kolev, S., Christov, N.K., Balint, A., Kocsy, G., Vágújfalvi, A., and Galiba, G. The expression of CBF genes at Fr-2 locus is associated with the level of frost tolerance in Bulgarian winter wheat cultivars, Biotechnol. Biotechnol. Equip., 2014, vol. 28, no. 3, pp. 392–401.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. N. Baranova.

Additional information

Original Russian Text © E.N. Baranova, I.A. Chaban, N.V. Kononenko, M.R. Khaliluev, N.K. Christov, A.A. Gulevich, E.G. Todorovska, 2017, published in Rossiiskaya Sel’skokhozyaistvennaya Nauka, 2017, No. 2, pp. 3–10.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baranova, E.N., Chaban, I.A., Kononenko, N.V. et al. Ultrastructural organization of the domains in the cell nucleus of dicotyledonous and monocotyledonous plants under abiotic stress. Russ. Agricult. Sci. 43, 199–206 (2017). https://doi.org/10.3103/S1068367417030041

Download citation


  • interphase nucleus
  • nucleolus
  • euchromatin
  • heterochromatin
  • nuclear bodies
  • nonspecific inclusions
  • condensation and decondensation of chromatin
  • abiotic stress
  • ploidy
  • plant cell
  • ultrastructure