Russian Agricultural Sciences

, Volume 42, Issue 6, pp 423–430 | Cite as

Compatibility study using hybridization procedure among Pleurotus genotypes and authentication by enzyme expression and ITSR of rDNA

  • E. A. AdebayoEmail author
  • J. K. J. Oloke
  • M. A. Azeez
  • A. A. Ayandele
  • O. N. Majolagbe
Plant Growing


Cross compatibility and authentication of hybrid genotypes among species of Pleurotus were studied using lignocellulotic enzymes production and Internal transcribed spacer (ITS) of rDNA. Schematic procedure of hyphal anastomosis hybridization between the species of Pleurotus was employed in this study. Formation of clamp connexion, changes in morphological hyphal arrangement and general increased in the enzymes production by the hybrid strains over their wild types is an evidence for the compatibility of crossed genotypes. Highest produced enzyme was manganese peroxidase by hybrid LN 97 with 3.25 Uml–1, followed by laccase with 3.06 Uml–1 obtained in LN 91 (hybrid). Lignin peroxidase was the least enzyme produced, but with better performance in hybrid LN 97 (2.75 Uml–1). Dendrogram of relationship among the genotypes revealed two major clusters. Cluster II contained singleton (LN 95), hybrid strain which totally separated from both parents. Most strains clustered away from their parents, authenticating the hybrids produced. Current study shows the Pleurotus employed for this investigation are cross compatible with high expression of heterosis in hybrid strains relative to the parents on the basis of enzymes produced. This technique could serve as a good tool in breeding programs for Pleurotus strain improvement.


anastomosis laccase lignin peroxidase manganase peroxidase oyster mushroom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, S.T. and Miles, P.G., Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, Sulzycki, J., Ed., Boca Raton, FL: CRC Press, 2004, 2nd ed.Google Scholar
  2. 2.
    Pawlik, A., Grzegorrz, J., Joanna, K., Wanda, M., and Jerzy, R., Genetic diversity of the edible mushroom Pleurotus sp. by amplified fragment length polymorphism, Curr. Microbiol., 2012, no. 65, pp. 438–445.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosado, F.R., Carbonero, E.R., Kemmelmeier, C., Tischer, C.A., Gorin, P.A.J., and Iaconini, M., A partially 3-0-methylated (1-4)-linked, B-D-salaetan and B-D-mannan from Pleurotus ostreatoroseus, Sing. FEMS Microbiol. Lett., 2002, no. 212, pp. 261–265.PubMedGoogle Scholar
  4. 4.
    Garzillo, A.M.V., Di Paolog, S., Kuzzi, M., and Buonocore, V., Hydrolytic properties of extracelluar cellulases from Pleurotus ostreatus, App. Microbiol., 1994, no. 42, pp. 476–481.CrossRefGoogle Scholar
  5. 5.
    Martin, A.M., Study of the growth and biomass composition of the edible mushroom Pleurotus ostreatus, in Food Science and Human Nutrition, Charalambus, G., Ed., Amsterdam: Elsevier Science Publishers, 1992, pp. 239–248.CrossRefGoogle Scholar
  6. 6.
    Marois, H., Romas, C., Matos, N., Forgaes, E., Cserhati, T., Almeida, V., Oliveira, J., Darwish, Y., and Illes, Z., Liquid chromatographic and electrophoretic characterization of extracellular ß-glucosidase of Pleurotus ostreatus grow in organic waste, J. Chroma, 2002, no. B770, pp. 111–119.Google Scholar
  7. 7.
    Adebayo, E.A., Oloke, J.K., Majolagbe, O.N., Ajani, R.A., and Bora, T.C., Antimicrobial and anti-inflammatory potential of polysaccharide from Pleurotus pulmonarius LAU 09, Afr. J. Microbiol. Res., 2012, no. 6 (13), pp. 3315–3323.Google Scholar
  8. 8.
    Solomko, E.F. and Eliseeva, G.S., Biosynthesis of group B vitamins by the fungus Pleurotus ostreatus in submerged culture, Prikl. Biokhim., 1988, no. 24 (2), pp. 64–169.Google Scholar
  9. 9.
    Sigoillot, C., Camerero, S., Vidal, T., Record, E., Asther, M., and Perez-Boada, M., Comparison of different fungal enzymes for bleaching high quality paper pulps, J. Biotechnol., 2005, no. 115, pp. 333–343.CrossRefPubMedGoogle Scholar
  10. 10.
    Kurashige, S., Akusawa, Y., and Endo, F., Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak and activities of macrophages and lymphocytes in mice treated with a carcinogen N-butyl-N-butanolnitrosamine, Inmunoph. Immunot., 1997, no. 19, pp. 175–183.Google Scholar
  11. 11.
    Bobek, P. and Galbavy, S., Hyopocholesferolemic and anti-atherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbit, Nahrung, 1999, no. 43 (5), pp. 339–342.CrossRefPubMedGoogle Scholar
  12. 12.
    Kwon, S.I. and Anderson, A.J., Laccase isozymes: Production by an opportunistic pathogen, a Fusarium proliferatum isolate from wheat, Physiol. Molecul. Plant. Pathol., 2001, no. 59, pp. 235–242.CrossRefGoogle Scholar
  13. 13.
    Wang, H., Gao, J., and Ng, T.B., A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus, Biochem. Biophys. Res. Comm., 2000, no. 275, pp. 810–816.CrossRefPubMedGoogle Scholar
  14. 14.
    Baldrian, P. and Snajdr, J., Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes, Enz. Microbiol. Technol., 2006, no. 39, pp. 1023–1029.CrossRefGoogle Scholar
  15. 15.
    Moucalvo, J.M., Wang, H.H., and Hseu, R.S., Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 255 ribosomal DNA sequences, Mycologia, 1995, no. 87 (2), pp. 223–238.CrossRefGoogle Scholar
  16. 16.
    Vilgalys, R. and Sun, B.L., Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences, Proc. Nat. Acad. Sci., 1994, no. 91, pp. 4599–4603.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Adebayo, E.A., Oloke, J.K., Achana, Y., Barooah, M., and Bora, T.C., Improving yield performance of Pleurotus pulmonarius through hyphal anastomosis fusion of dikaryons, W. J. Microbiol. Biotechnol., 2013, no. 29, pp. 1029–1037.CrossRefGoogle Scholar
  18. 18.
    Machado, K.M.G. and Matheus, D.R., Biodegradation of remazol brilhant blue R by ligninolytic enzymatic complex produced by Pleurotus ostreatus, Brazil. J. Microbiolol., 2006, no. 37, pp. 468–473.CrossRefGoogle Scholar
  19. 19.
    Glenn, J.K., Akileswarean, L., and Gold, M.H., Mn (II) oxidation is the principle function of the extracellular Mn-peroxidase from Phanerochaetes chrysosporium, Arch. Biochem. Biophys., 1986, no. 251, pp. 688–696.CrossRefPubMedGoogle Scholar
  20. 20.
    Tien, M. and Kirk, K.T., Lignin peroxidase of Phanerochaetes chrysosporium, Meth. Enzymol., 1988, no. 161B, pp. 238–249.CrossRefGoogle Scholar
  21. 21.
    White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protocols: A Guide to Methods and Applications Academic Press, Innis, M.A., Gelfand, D.H., Sninsk, J.J., and White, T.J., Eds., New York, 1990, pp. 315–322.Google Scholar
  22. 22.
    Gardes, M. and Bruns, T.D., ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizea and rusts, Mol. Ecol., 1993, no. 2, pp. 113–118.CrossRefPubMedGoogle Scholar
  23. 23.
    Vilgalys, R. and Hester, M., Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species, J. Bacteriol., 1990, no. 172, pp. 4238–4246.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Felsenstein, J., PHYLIP–Phylogeny inference package (version 3.2), Cladist., 1989, no. 5, pp. 164–166.Google Scholar
  25. 25.
    Page, R., Tree view: An application to display phylogenetic trees on personal computers, Comp. Appl. Biosci., 1996, no. 12, pp. 357–358.PubMedGoogle Scholar
  26. 26.
    Lettera, V., Claudia, D.V., Alessandra, P., and Giovanni, S., Low impact strategies to improve ligninolytic enzyme production in filamentous fungi: The case of laccase in Pleurotus ostreatus, C. R. Biol., 2011, no. 334, pp. 781–788.CrossRefPubMedGoogle Scholar
  27. 27.
    Omoanghe, S.I. and Mikiashvill, N.A., Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids, J. Ind. Microbiol. Biotechnol., 2009, no. 36, pp. 1353–1362.Google Scholar
  28. 28.
    Zervakis, G. and Balis, C., A pluralistic approach in the study of Pleurotus species with emphasis on compatibility and physiology of the European morphotaxa, Mycol. Res., 1996, no. 100, pp. 717–731.CrossRefGoogle Scholar
  29. 29.
    Carlile, M.J. and Watkinson, S.C., The Fungi, London, Boston, San Diego, New York, Sydney, Tokyo: Academic Press, 1994.Google Scholar
  30. 30.
    Wang, D., Sakoda, A., and Suzuki, M., Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain, Biores. Technol., 2001, no. 78, pp. 293–300.CrossRefGoogle Scholar
  31. 31.
    Stajic, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S.P., Nevo, E., and Vukojevic, J., Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species, Enz. Microb. Technol., 2006, no. 38, pp. 65–73.CrossRefGoogle Scholar
  32. 32.
    Gomes, E., Aguiar, A.P., Carvlho, C.C., Bonta, R.M., Desilva, R., and Boscolo, M., Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes, Brazil. J. Microbiol., 2009, no. 40, pp. 31–39.CrossRefGoogle Scholar
  33. 33.
    Tapia-Tussell, R., Lappe, P., Ulloa, M., Ramayo, A.Q., Farfan, M.C., Saavedra, A.L., and Brito, D.P., A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes, Res. Prot., 2006, no. 33, pp. 67–70.Google Scholar
  34. 34.
    Plaza, G.A., Upchurch, R., Brigmon, R.L., and Whitman, W.B., Rapid DNA extractcion for screening soil filamentous fungi using PCR amplification, Pol. J. Environ. Stud., 2004, no. 13 (3), pp. 315–318.Google Scholar
  35. 35.
    Ali, M.A., Seyal, M.T., Awan, S.I., Niaz, S., Ali, S., and Abbas, A., Hybrid authentication in upland cotton through RAPD analysis, Austr. J. Crop. Sci., 2008, no. 2 (3), pp. 141–149.Google Scholar
  36. 36.
    Rahman, M., Hussain, D., and Zafar, Y., Estimation of divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology, Crop Sci., 2002, no. 42, pp. 2137–2144.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • E. A. Adebayo
    • 1
    Email author
  • J. K. J. Oloke
    • 1
  • M. A. Azeez
    • 1
  • A. A. Ayandele
    • 1
  • O. N. Majolagbe
    • 1
  1. 1.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria

Personalised recommendations