Skip to main content
Log in

AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress

  • Plant Cultivation
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

A pot experiment was performed to see the effect of two indigenous arbuscular mycorrhizal (AM) fungi Glomus mosseae and Acaulospora laevis, alone and in combination on growth, biomass and mineral nutrition of Cicer arietinum under different salinity levels imposed by 4, 8, and 12 dS/m EC solution (sodium chloride, calcium chloride and sodium sulphate). All AM inoculated plants showed significant increment in growth, biomass, mineral nutrition and yield over control. The extent of bioinoculants response on plant growth as well as root colonization decreases with the increase in the level of salinity. Among all the growth parameters plant height (26.4 ± 1.14 cm), root length (13.4 ± 1.67 cm), total chlorophyll (2.33 ± 0.02 mg/100 mg f. wt), root colonization (41.6 ± 2.70%) and AM spore number (63.8 ± 1.78 per 10 gm soil) were recorded highest in dual combination (G. mosseae and A. laevis) at 4 dS/m while fresh shoot (6.80 ± 0.67 gm) and dry shoot weight (0.96 ± 0.18 gm) was found maximum in G. mosseae at the same concentration of salinity. Greater Phosphorus (P) acquisition and yield was observed at 4 dS/m with dual combination (G. mosseae and A. laevis) that possibly be responsible to protect plants from salt stress. Although Nitrogen (N), Potassium (K) and Sodium (Na) contents also declined with increasing salinity. Overall results showed that mycorrhizal colonization improves host plant mineral concentration and thereby increases the growth, yield and nutrient uptake of C. arietinum ameliorating the harmful effect at salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelly, C., Krouma, A., and Drevon, J., Nitrogen fixation and yield of chickpea in saline Mediterranean zones, in The Grain Legumes, 2005, vol. 42, pp. 16–17.

    Google Scholar 

  2. Ahmad, F., Gaur, P., and Croser, J., Chickpea (Cicer arietinum L.), in Genetic Resources, Chromosome Engineering and Crop Improvement — Grain Legumes, Boca Raton, FL: CRC Press, 2005, vol. 1, pp. 185–214.

    Google Scholar 

  3. Al-Khaliel, A.S., Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ., 2010, vol. 56, pp. 318–324.

    CAS  Google Scholar 

  4. Allen, E.B., and Cunningham, G.L., Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels, New Phytol., 1983, vol. 93, pp. 227–236.

    Article  Google Scholar 

  5. Al-Karaki, G.N., and Clark, R.B., Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress, J. Plant Nutri., 1998, vol. 21, pp. 263–276.

    Article  CAS  Google Scholar 

  6. Al-Karaki, G.N., Growth and mineral acquisition by mycorrhizal tomato grown under salt stress, Mycorrhiza, 2000, vol. 10, pp. 51–54.

    Article  CAS  Google Scholar 

  7. Arnon, D.T., Copper enzyme in isolated chloroplasts polyphenol oxidase in Beta vulgaris, Plant Physiol, 1949, vol. 24, pp. 1–5.

    Article  PubMed  CAS  Google Scholar 

  8. Ashraf, M., and Harris, P.J.C., Potential biochemical indicators of salinity tolerance in plants, Plant Science, 2004, vol. 166, pp. 3–16.

    Article  CAS  Google Scholar 

  9. Ashwani, K., Satyawati, S.H., and Saroj, M., Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L., J. Plant Growth Regul., 2010, vol. 29, pp. 297–306.

    Article  Google Scholar 

  10. Belew, D., Astatkie, T., Mokashi, M.N., Getachew, Y., and Patil, C.P., Effects of Salinity and Mycorrhizal Inoculation (Glomus fasciculatum) on growth Responses of Grape Rootstocks (Vitis spp). S. Afr. J. Enol. Vitic., 2010, vol. 31, pp. 82–88.

    Google Scholar 

  11. Cantrell, I.C., and Linderman, R.G., Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity, Plant Soil., 2001, vol. 233, pp. 269–281.

    Article  CAS  Google Scholar 

  12. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., and Rea, E., Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soil., 2008, vol. 44, pp. 501–509.

    Article  CAS  Google Scholar 

  13. Evelin, H., Kapoor, R., and Giri, B., Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Bot. 2009, vol. 104, pp. 1263–1280.

    Article  CAS  Google Scholar 

  14. Flowers, T.J., Improving crop salt tolerance. J. Experimental Bot., 2004, vol. 55, pp. 307–319.

    Article  CAS  Google Scholar 

  15. Frechill, S., Lasa, B., Ibarretxe, L., Lamsfus, C., and Aparicio Trejo, P., Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul., 2001, vol. 35, pp. 171–179.

    Article  Google Scholar 

  16. Gerdemann, J. W. and Nicolson, Y. H., Spores of mycorrhizae Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc., 1963, vol. 46, pp. 235–244.

    Article  Google Scholar 

  17. Giri, B., Kapoor, R., and Mukerji, K.G., Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil soils., 2003, vol. 38, pp. 170–175.

    Article  Google Scholar 

  18. Giri, B. and Mukerji, K.G., Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake, Mycorrhiza., 2004, vol. 14, pp. 307–312

    Article  PubMed  Google Scholar 

  19. Hasegawa, P.M., Bressan, R.A., Zhu, J., and Bohnert, H.J., Plant cellular and molecular responses to high salinity, Ann. Review Plant Biol., 2000, vol. 51, pp. 463–499.

    Article  CAS  Google Scholar 

  20. Iqbal, A., Khalil, I.A., Ateeq, N., and Khan, M.S., Nutritional quality of important food legumes, Food Chem., 2006, vol. 97, pp. 331–335.

    Article  CAS  Google Scholar 

  21. Jackson, M.L., Soil Chemical Analysis, New Delhi: Prentice Hall, 1973.

    Google Scholar 

  22. Jahromi, F., Aroca, R., Porcel, R., and Ruiz-Lozano, J.M., Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants, Microb. Ecol., 2008, vol. 55, pp. 45–53.

    Article  PubMed  Google Scholar 

  23. Johansen, C., Saxena, N.P., Chauhan, Y.S., Subba Rao, G.V., Pundir, R.P.S., Kumar Rao, J.V.D.K., and Jana, M.-K., Genotypic variation in salinity response of chickpea and pigeon pea, Proc. Int. Congr. Plant Physiology, Sinha, S.K., Sane, P.V., Bhargava, S.C., and Agrawal, P.K., Eds., New Delhi: Indian Agric. Res. Inst., 1990, vol. 1, pp. 977–983.

    Google Scholar 

  24. Juniper, S. and Abbott, L., Vesicular-arbuscular mycorrhizas and soil salinity, Mycorrhiza, 1993, vol. 4, pp. 445–58.

    Article  Google Scholar 

  25. Kapoor, R., Chaudhary, V., and Bhatnagar, A.K., Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L., Mycorrhiza, 2007, vol. 17, pp. 581–587.

    Article  PubMed  CAS  Google Scholar 

  26. Kaushih, S., Kumar, A., Aggarwal, A., and Parkash, V., Influence of inoculation with the endomycorrhizal fungi and Trichoderma viride on morphological and physiological growth parameters of Rauwolfia serpentina Benth. ex. Kurtz, Indian J. Microbiol., 2011. doi 10.1007/s 12088-011-0215-1.

    Google Scholar 

  27. Mathur, N., Singh, J., Bohra, S., and Vyas, A., Arbuscular mycorrhizal status of medicinal halophytes in saline area of Indian Thar Desert, Int. J. Soil Sci., 2007, vol. 2, pp. 119–127.

    Article  Google Scholar 

  28. Menge, J.A. and Timmer, L.M., Procedure for inoculation of plants with VAM in the laboratory, greenhouse and field, Methods and Principles of Mycorrhizal Research, Schenck, N.C., Ed., St. Paul, Minnesota: A.P.S. Press, 1982, pp. 59–68.

    Google Scholar 

  29. Morton, J.B. and Benny, G.L., Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glomineae and Gigasporineae, with an emendation of Glomaceae, Mycotaxon, 1990, vol. 37, pp. 471–491.

    Google Scholar 

  30. Mukerji, K.G., Taxonomy of endomycorrhizal fungi, Advances in Botany, Mukerji, K.G., Mathur, B., Chamola, B.P., and Chitralekha, P., Eds., New Delhi: APH Publ., 1996, pp. 211–221.

    Google Scholar 

  31. Murkute, A.A., Sharma, S., and Singh, S.K., Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi, Hortic. Sci., 2006, vol. 33, pp. 70–76.

    Google Scholar 

  32. Navarro, J.M., Botella, M.A., Cerda, A., and Martinez, V., Phosphorus uptake and translocation in saltstressed melon plants, J. Plant Physiol., 2001, vol. 158, pp. 375–381.

    Article  CAS  Google Scholar 

  33. Parida, S.K. and Das, A.B., Salt tolerance and salinity effects on plant, Ecotoxicol. Environ. Saf., 2005, vol. 60, pp. 324–349.

    Article  PubMed  CAS  Google Scholar 

  34. Park, Y., Kim, S.H., Matalon, S., Wang, N.L., and Franses, E.I., Effect of phosphate salts concentrations, supporting electrolytes, and calcium phosphate salt precipitation on the pH of phosphate buffer solutions, Fluid Phase Equilib., 2009, vol. 278, pp. 76–84.

    Article  CAS  Google Scholar 

  35. Pfeiffer, C.M. and Bloss, H.E., Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization, New Phytol., 1988, vol. 108, pp. 315–321.

    Article  Google Scholar 

  36. Phillips, J.M. and Hayman, D.S., Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Brit Mycol Soc., 1970, vol. 55, pp. 158–161.

    Article  Google Scholar 

  37. Pond, E.C., Menge, J.A., and Jarrell, W.M., Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils, Mycologia, 1984, vol. 76, pp. 74–84.

    Article  Google Scholar 

  38. Quilambo, O.A., Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations, PhD Thesis, Groningen, the Netherlands: Univ. of Groningen, 2000.

    Google Scholar 

  39. Rao, D.L.N., Biological amelioration of salt-affected soils, in Microbial Interactions in Agriculture and Forestry, Enfield, USA: Science Publ. 1998, vol. 1, pp. 21–23.

    Google Scholar 

  40. Rathore, S., Yadav, K., Kumar, S., and Singh, N., Biotechnological approaches to induce salt resistant in plants, Ann. Biol. (Hisar, India), 2012, vol. 28, pp. 141–150.

    Google Scholar 

  41. Richards, L.A., Diagnosis and Improvement of Saline and Alkali Soils, Washington, DC: United States Dep. Agric., 1954, pp. 4–18.

    Google Scholar 

  42. Roldan, A., Diaz-Vivancos, P., Hernandez, J.A., Carrasco, L., and Caravaca, F., Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrubs seedlings grown in an amended semiarid soil, J. Plant Physiol., 2008, vol. 165, pp. 715–722.

    Article  PubMed  CAS  Google Scholar 

  43. Ruiz-Lozano, J.M., Azcon, R., and Gomez, M., Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants, Plant Physiol., 1996, vol. 98, pp. 767–722.

    Article  CAS  Google Scholar 

  44. Satti, S.M.E. and Al-Yahyai, R.A., Salinity tolerance in tomato: implications of potassium, calcium and phosphorus, Comm. Soil Sci. Plant Anal., 1995, vol. 26, pp. 2749–2760.

    Article  CAS  Google Scholar 

  45. Schenck, N.C. and Perez, Y., Manual for the Identification of VA Mycorrhizal VAM Fungi, Florida, USA: Univ. of Florida, 1990, p. 241.

    Google Scholar 

  46. Schüβler, A., Schwarzott, D., and Walker, C., A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 2001, vol. 105, pp. 1413–1421.

    Article  Google Scholar 

  47. Sharifi, M., Ghorbanli, M., and Ebrahimzadeh, H., Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi, J. Plant Physiol., 2007, vol. 164, pp. 1144–1151.

    Article  PubMed  CAS  Google Scholar 

  48. Shekoofeh, E. and Sepideh, H., Effect of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimum basilicum L., Iran. J. Plant Physiol., 2011, vol. 1, pp. 215–222.

    Google Scholar 

  49. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, San Diego, CA: Academic Press, 2008.

    Google Scholar 

  50. Tsang, A. and Maun, M.A., Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastal foredunes, Plant Ecol., 1999, vol. 144, pp. 159–166.

    Article  Google Scholar 

  51. Villora, G., Moreno, D.A., Pulgar, G., and Romero, L., Salinity affects phosphorus uptake and partitioning in zucchini, Comm. Soil Sci. Plant Anal., 2000, vol. 31, pp. 501–507.

    Article  CAS  Google Scholar 

  52. Walker, C., Taxonomic concepts in the Endogonaceae spore wall characteristics in species description, Mycotaxon, 1983, vol. 18, pp. 443–445.

    Google Scholar 

  53. Wang, B., Xie, Z., Chen, J., Jiang, J., and Su, Q., Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil, J. Environ. Sci., 2008, vol. 20, pp. 1109–1117.

    Article  CAS  Google Scholar 

  54. Yadav, K., Singh, N., and Aggarwal, A., Arbuscular mycorrhizal (AM) technology for the growth enhancement of micropropagated Spilanthes acmella Murr., Plant Prot. Sci., 2012, vol. 48, pp. 31–36.

    CAS  Google Scholar 

  55. Zhang, H. and Blumwald, E., Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit, Nature Biotechnol., 2001, vol. 19, pp. 765–768.

    Article  CAS  Google Scholar 

  56. Zhu, J., Regulation of ion homeostasis under salt stress, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 441–445.

    Article  PubMed  CAS  Google Scholar 

  57. Zuccarinin P., Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant, Soil Environ., 2007, vol. 53, pp. 283–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Kadian.

Additional information

The article is published in the original.

About this article

Cite this article

Kadian, N., Yadav, K., Badda, N. et al. AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress. Russ. Agricult. Sci. 39, 321–329 (2013). https://doi.org/10.3103/S1068367413040058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367413040058

Keywords

Navigation