Russian Agricultural Sciences

, Volume 39, Issue 3, pp 226–235 | Cite as

Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme

  • Mahmoud OtroshyEmail author
  • Zahra Khalili
  • Mohammad Ali Ebrahimi
  • Mojtaba Khayam Nekoui
  • Kosar Moradi
Plant Cultivation


Tomato serves as a model to introduce agronomically important genes into dicotyledonous crop plants and to develop edible vaccines and produce cost-effective therapeutics. This study has developed an efficient protocol of shoot organogenesis for Lycopersicon esculentum Mill. through using of different types of explants and growth regulators. Generally, all explants responded significantly to presence of BAP. Best shoot regeneration for leaf (100%) was achieved on MS supplemented with BAP (2 mg/L) + IAA (0.1 mg/L), whereas it was recorded on MS supplemented with BAP (2 mg/L) and BAP (2 mg/L) + IAA (0.5 mg/L) for cotyledons (95%). In addition, hypocotyls (77%) showed the best shoot response on MS supplemented BAP (3 mg/L). Highest number of shoots per explant was 13.33, 12.25, 7.94 respectively for hypocotyls, leaves, cotyledons. The best medium for highest length of shoot was in the presence of BAP (3 and 2 mg/L) + IAA (0.1 mg/L) respectively for hypocotyl (45 mm) and leaf (40.50 mm) explants. This parameter was achieved for cotyledons (13.32 and 12.5 mm) on MS medium supplemented with BAP (3 and 2) mg/L + IAA (0.1 mg/L), respectively. The increasing of BAP concentration up to 3 (mg/L) causes shoot length to continue developing, but it fell down in the presence of BAP (4 mg/L) due to the toxic effect of growth regulators accumulation. Root formation took place within 10–14 days after culturing on the rooting media. Best root induction (100%) was observed on MS medium supplemented with IAA (0.1 and 0.2 mg/L). All rooted shoots acclimated in phytotron and then cultivated in the greenhouse.


Lycopersicon esculentum Mill. plant regeneration multiple shoot induction micropropagation growth regulators explant source 





indole acetic acid


indole-3-butyric acid


Murashige and Skoog medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afroz, A., Chaudhry, Z., Rashid, U., Khan, M.R., and Ali, G.M., Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water, Afr. J. Biotechnol., 2010, vol. 9(24), pp. 3634–3644.Google Scholar
  2. 2.
    Asakura, N., Misoo, S., Kamijima, O., and Sawano, M., High frequency regeneration of diploids from apical end of cultured hypocotyl tissue in tomato, Breed. Sci., 1995, vol. 45, pp. 455–459.Google Scholar
  3. 3.
    Bhatia, P. and Ashwath, N., Effect of duration of light: Dark cycles on in vitro shoot regeneration of tomato, Asian J. Plant Sci., 2005, vol. 4(3), pp. 255–260.CrossRefGoogle Scholar
  4. 4.
    Bhatia, P. and Ashwath, N., Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato, Biotechnology, 2005, vol. 4(1), pp. 7–10.CrossRefGoogle Scholar
  5. 5.
    Bhatia, P., Ashwath, N., Senaratna, T., and David, M., Tissue culture studies of tomato (Lycopersicon esculentum), Plant Cell, Tissue Organ Cult., 2004, vol. 78, pp. 1–21.CrossRefGoogle Scholar
  6. 6.
    Bhatia, P., Ashwath, N., and David, M., Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato, In Vitro Cell. Dev. Biol.: Plant., 2005, vol. 41, pp. 457–464.CrossRefGoogle Scholar
  7. 7.
    Carimi, F., Terzi, M., De Michele, R., Zottini, M., and Lo Schiavo, F., High levels of the cytokinin BAP induces PCD by accelerating senescence, Plant Sci., 2004, vol. 166(4), pp. 963–969.CrossRefGoogle Scholar
  8. 8.
    Carvalho, R.F., Campos, M.L., Pino, L.E., Crestana, S.L., Zsogon, A., Lima, J.E., Benedito, V.A., and Peres, L.E.P., Convergence of developmental mutants into a single tomato model system: “Micro-Tom” as an effective toolkit for plant development research, Plant Methods, 2011, vol. 7(18), pp. 1–14.Google Scholar
  9. 9.
    Chaudhary, Z., Afroz, A., and Rashid, H., Effect of variety and plant growth regulators on callus proliferation and regeneration response of three tomato cultivars (Lycopersicon esculentum), Pak. J. Bot., 2007, vol. 39(3), pp. 857–869.Google Scholar
  10. 10.
    Chaudhary, Z., Feroz, I., Ahmed, W., Rashid, H., Mirza, B., and Qureshi, A.S., Varietal response of Lycopersicon esculentum L. to callogenesis and regeneration, OnLine J. Biol. Sci., 2001, vol. 1, pp. 1138–1140.CrossRefGoogle Scholar
  11. 11.
    Chaudhary, Z., Habib, D., Rashid, H., and Qureshi, A.S., Regeneration from various explants of In-vitro seedlings of tomato (Lycopersicon esculentum c.v. Roma), Pak. J. Biol. Sci., 2004, vol. 7(2), pp. 269–272.CrossRefGoogle Scholar
  12. 12.
    Chaudhary, Z., Abbas, S., Yasmin, A., Rashid, H., Ahmed, H., and Anjum, M.A., Tissue culture studies in tomato (Lycopersicon esculentum) Var. Moneymaker, Pak. J. Bot., 2010, vol. 42(1), pp. 155–163.Google Scholar
  13. 13.
    Chen, L.Z. and Adachi, T., Plant regeneration via somatic embryogenesis from cotyledon protoplasts of tomato (Lycopersicon esculentum Mill), Breed. Sci., 1994, vol. 44, pp. 337–338.Google Scholar
  14. 14.
    Daniell, H., Khan, M.S., and Allison, L., Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology, Trends Plant Sci., 2002, vol. 7, pp. 84–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Davis, D.G., Breiland, K.A., Frear, D.S., and Secor, G.A., Callus initiation and regeneration of tomato (Lycopersicon esculentum) cultivars with different sensitivities to metribuzin, Plant Growth Regul., 1994, vol. 22, pp. 65–73.Google Scholar
  16. 16.
    Devi, M., Dhaliwal, M.S., Kaur, A., and Gosal, S.S., Effect of growth regulators on in vitro morphogenetic response of tomato, Indian J. Biotechnol., 2008, vol. 7, pp. 526–530.Google Scholar
  17. 17.
    Di Matteo, A., Rigano, M.M., Sacco, A., Frusciante, L., and Barone, A., Genetic transformation in tomato: novel tools to improve fruit quality and pharmaceutical production, Genetic Transformation, Alvarez, M., Ed., Croatia: InTech, 2011, p. 55. ISBN 978-953-307-364-4Google Scholar
  18. 18.
    Duzyaman, E., Tanrisever, A., and Gunver, G., Comparative studies on regeneration of different tissues of tomato in vitro, Acta Hortic., 1994, vol. 366, pp. 235–242.Google Scholar
  19. 19.
    El-Farash, E.M., Abdalla, H.I., Taghian, A.S., and Ahmad, M.H., Genotype, explant age and explant type as affecting callus and shoot regeneration in tomato, Assiut J. Agric. Sci., 1993, vol. 24, pp. 3–14.Google Scholar
  20. 20.
    FAOSTAT, Crop Statistics, FAO, 2011. Cited December 11, 2011.Google Scholar
  21. 21.
    FAO: Tomato, Land and Water, FAO, 2002. Cited December 2, 2011.
  22. 22.
    Fari, M., Szasz, A., Mityko, J., Nagy, I., Csanyi, M., and Andrasfalvy, A., Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species, Capsicum Newsl., 1992, pp. 243–248.Google Scholar
  23. 23.
    Franklin, C.I. and Dixon, R.A., Initiation and maintenance of callus and cell suspension cultures, Plant Cell Culture — a Practical Approach, Dixon, R.A. and Gonzales, R.A., Eds., New York: Oxford Univ. Press, 1994, 2nd ed., pp. 1–29.Google Scholar
  24. 24.
    Gill, R., Malik, K.A., Sanago, M.H.M., and Saxena, P.K., Somatic embryogenesis and plant regeneration from seedling cultures of tomato (Lycopersicon esculentum Mill.), J. Plant Physiol., 1995, vol. 147, pp. 273–276.CrossRefGoogle Scholar
  25. 25.
    Granny, Health Benefits of tomatoes, Alternative Therapies, 2011.
  26. 26.
    Gubis, J., Lajchova, Z., Farago, J., and Jurekova, Z., Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.), Czech J. Genet. Plant Breed., 2003, vol. 39, pp. 9–14.Google Scholar
  27. 27.
    Gubis, J., Lajchova, Z., Farago, J., and Jurekova, Z., Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum Mill.), Biologia (Bratislava), 2004, vol. 59(3), pp. 405–408.Google Scholar
  28. 28.
    Gunay, A.L. and Rao, P.S., In vitro propagation of hybrid tomato plants (Lycopersicon esculentum L.) using hypocotyl and cotyledon explants, Ann. Bot., 1980, vol. 45, pp. 205–207.Google Scholar
  29. 29.
    Hamza, S.Y. and Chupeau, Re-evolution of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum), J. Exp. Bot., 1993, vol. 44, pp. 1837–1845.CrossRefGoogle Scholar
  30. 30.
    Ichimura, K. and Oda, M., Stimulation of phenotypically normal shoot regeneration of tomato (Lycopersicon esculentum Mill.) by commercial filter paper extracts, J. Jpn. Soc. Hortic. Sci., 1998, vol. 67, pp. 378–380.CrossRefGoogle Scholar
  31. 31.
    Ichimura, K. and Oda, M., Stimulation of shoot regeneration from cotyledon segments of tomato (Lycopersicon esculentum Mill.) by agar and its extract, J. Jpn. Soc. Hortic. Sci., 1995, vol. 64, pp. 135–141.CrossRefGoogle Scholar
  32. 32.
    Ishag, S., Osman, M.G., and Khalafalla, M.M., Effects of growth regulators, explant and genotype on shoot regeneration in tomato (Lycopersicon esculentum c.v. Omdurman), Int. J. Sustainable Crop Prod., 2009, vol. 4(6), pp. 7–13.Google Scholar
  33. 33.
    Izadpanah, M. and Khosh-Khui, M., Comparisons of in vitro propagation of tomato cultivars, Iran Agric. Res., 1992, vol. 8, pp. 37–47.Google Scholar
  34. 34.
    Jabeen, N., Chaudhry, Z., Rashid, H., and Mirza, B., Effect of genotype and explant type on in vitro shoot regeneration of tomato (Lycopersicon esculentum), Pak. J. Bot., 2005, vol. 37(4), pp. 899–903.Google Scholar
  35. 35.
    Jatoi, S.A., Sajid, G.M., Quraishi, A., and Munir, M., Callogenetic and morphogenetic response of leaf explants of in vitro grown F1 tomato hybrids to different levels of plant growth regulators, Pak. J. Plant Sci., 2001, vol. 1(2), pp. 281–287.Google Scholar
  36. 36.
    Kaparakis, G. and Alderson, P.G., Influence of high concentrations of cytokinins on the production of somatic embryos by germinating seeds of tomato, aubergine and pepper, J. Hortic. Sci. Biotechnol., 2002, vol. 77, pp. 186–190.Google Scholar
  37. 37.
    Khan, M.S., Usman, M., and Lilla, M.I., Facile plant regeneration from tomato leaves induced with spectinomycin, Pak. J. Bot., 2006, vol. 38(4), pp. 947–952.Google Scholar
  38. 38.
    Ling, H.Q., Kriseleit, D., and Ganal, M.W., Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.), Plant Cell Rep., 1998, vol. 17(11), pp. 843–847.CrossRefGoogle Scholar
  39. 39.
    Mensuali-Sodi, A., Panizza, M., and Tognoni, F., Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro, Plant Growth Regul., 1995, vol. 17, pp. 205–212.CrossRefGoogle Scholar
  40. 40.
    Moghaleb, R.E.A., Saneoka, H., and Fujita, K., Plant regeneration from hypocotyls and cotyledon explants of tomato (Lycopersicon esculentum), Soil Sci. Plant Nutr., 1999, vol. 45, pp. 639–646.CrossRefGoogle Scholar
  41. 41.
    Mohamed, A.N., Ismail, M.R., Kadir, M.A., and Saud, H.M., In vitro performances of hypocotyl and cotyledon explants of tomato cultivars under sodium chloride stress, Afr. J. Biotechnol., 2011, vol. 10(44), pp. 8757–8764.Google Scholar
  42. 42.
    Muhlbach, H.P., Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato, Planta, 1980, vol. 148, pp. 89–96.CrossRefGoogle Scholar
  43. 43.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  44. 44.
    Novak, F.J. and Maskova, I., Apical shoot tip culture of tomato, Sci. Hortic., 1979, vol. 10, pp. 337–344.CrossRefGoogle Scholar
  45. 45.
    Oktem, H.A., Bulbul, Y., Oktem, E., and Yucel, Regeneration and Agrobactrerium-mediated transformation studies in tomato (Lycopersicon esculentum Mill.), Turk. J. Bot., 1999, vol. 23, pp. 345–348.Google Scholar
  46. 46.
    Osman, M.G., Elhadi, E.A., and Khalafalla, M.M., Callus formation and organogenesis of tomato (Lycopersicon esculentum Mill, C.V. Omdurman) induced by thidiazuron, Afr. J. Biotechnol., 2010, vol. 9(28), pp. 4407–4413.Google Scholar
  47. 47.
    Padliskikh, V.L. and Yarmishin, A.P., Features of microclonal propagation in tomato, Vestsi Akademii Navuk BSS, Reryya Biyalagichnykh Navuk, 1990, vol. 6, pp. 52–54.Google Scholar
  48. 48.
    Rao, K.V., Kiranmayee, K., Pavan, U., Jaya Sree, T., Rao, A.V., and Sadanandam, A., Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum), J. Plant Physiol., 2005, vol. 162, pp. 959–962.PubMedCrossRefGoogle Scholar
  49. 49.
    Schnapp, S.R. and Preece, J.E., In vitro growth reduction of tomato and carnation microplants, Plant Cell, Tissue Organ Cult., 1986, vol. 6, pp. 3–8.CrossRefGoogle Scholar
  50. 50.
    Schutze, R. and Wieczorrek, G., Investigations into tomato tissue cultures. I. Shoot regeneration in primary explants of tomato, Arch. Zuchtungsforsch., 1987, vol. 17, pp. 3–15.Google Scholar
  51. 51.
    Selvi, D.T. and Khader, M.A., In vitro morphogenetic capacity of tomato (Lycopersicon esculentum Mill.) var. PKM 1, South Indian Hortic., 1993, vol. 41, pp. 251–258.Google Scholar
  52. 52.
    Sheeja, T.E., Mondal, A.B., and Rathore, R.K.S., Efficient plantlet regeneration in tomato (Lycopersicon esculentum), Plant Tissue Cult., 2004, vol. 14(1), pp. 45–53.Google Scholar
  53. 53.
    Sink, K.C., Handley, L.W., Niedz, R.P., and Moore, P.P., Protoplast culture and use of regeneration attributes to select tomato plants, in Proc. Int. Symp. EUCARPIA “Genetic Manipulation in Plant Breeding”, September 8–13, 1985, Berlin, Germany, 1986, pp. 405–413.Google Scholar
  54. 54.
    Sarker, R.H., Islam, K., and Hoque, M.I., In vitro regeneration and Agrobacterium-mediated genetic transformation of tomato (Lycopersicon esculentum Mill.), Plant Tissue Cult., Dev., Biotechnol., 2009, vol. 19(1), pp. 101–111.Google Scholar
  55. 55.
    Steinitz, B., Amitay, A., Gaba, V., Tabib, Y., Keller, M., and Levin, I., A simple plant regeneration-ability assay in a range of Lycopersicon species, Plant Cell, Tissue Organ Cult., 2006, vol. 84(3), pp. 269–278.CrossRefGoogle Scholar
  56. 56.
    Sukumar, S. and Shree Rangasamy, S.R., Response of in vitro leaf callus cultures for regeneration and evaluation of the regenerates in tomato, Curr. Sci., 1988, vol. 57, pp. 890–892.Google Scholar
  57. 57.
    Tomato, Seeds of Trade, The Natural History Museum, 2011. Accessed December 11, 2011.
  58. 58.
    Thomson, J.A., Genetic engineering of crop plants, in Biotechnology, Vol. III: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford, UK: Eolss Publ., 2011. Google Scholar
  59. 59.
    Van Roekel, J.S.C., Damm, B., Melchers, L.S., and Hoekema, A., Factors influencing transformation frequency of tomato, Plant Cell Rep., 1993, vol. 12, pp. 644–647.CrossRefGoogle Scholar
  60. 60.
    Vikram, G., Madhusudhan, K., Srikanth, K., Laxminarasu, M., and Swamy, N.R., Effect of plant growth regulators on in vitro organogenesis in cultivated tomato (Solanum lycopersicum L.), J. Res. Biol., 2011, vol. 1(4), pp. 263–268.Google Scholar
  61. 61.
    Tomato, Wikipedia. Accessed December 11, 2011.

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • Mahmoud Otroshy
    • 1
    Email author
  • Zahra Khalili
    • 1
    • 2
  • Mohammad Ali Ebrahimi
    • 2
  • Mojtaba Khayam Nekoui
    • 3
  • Kosar Moradi
    • 1
  1. 1.Department of Tissue CultureAgricultural Biotechnology Research Institute of Iran (ABRII)Najaf Abad, IsfahanI. R. Iran
  2. 2.Department of Agricultural BiotechnologyPayame Noor UniversityTehranI. R. Iran
  3. 3.Agricultural Biotechnology Research Institute of Iran (ABRII)KarajI. R. Iran

Personalised recommendations