Skip to main content
Log in

Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

The paper deals with the study of the structure, deformation hardening, and wear resistance under abrasive and sliding friction of quenched structural steel 50 (0.51% of C), which is subjected to frictional treatment by a hard alloy indenter. The resistance of a steel surface layer hardened by frictional treatment to mechanical effects is estimated using the kinetic indentation method. It is shown that frictional treatment yields a considerable increase in the wear resistance of quenched medium-carbon steel tested in pairs with flint and corundum, as well as under the conditions of adhesive wear and boundary friction, due to the hampering of the processes of microcutting, seizure, and plastic deformation. This is favored by the higher resistance of the nanostructured layer to residual deformation during contact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuster, L.Sh., Migranov, M.Sh., Chertovskikh, S.V., and Sadykova, A.Ya., Triboengineering Characteristics of Ultra-Fine Granularly Structured Titanium Produced by Intensive Plastic Deformation, J. Friction Wear, 2005, vol. 26, no. 2, pp. 208–214.

    Google Scholar 

  2. Jeong, D.H., Gonzalez, F., Palumbo, G., Aust, K.T., and Erb, U., The Effect of Grain Size on the Wear Properties of Electrodeposited Nanocrystalline Nickel Coatings, Scripta Mater., 2001, vol. 44, no. 3, pp. 493–499.

  3. Wang, Z.B., Tao, N.R., Li, S., Wang, W., Liu, G., Lu, J., and Lu, K., Effect of Surface Nanocrystallization on Friction and Wear Properties in Low Carbon Steel, Mater. Sci. Eng. A, 2003, vol. 352, nos. 1–2, pp. 144–149.

    Google Scholar 

  4. Makarov, A.V., Nanostructuring Friction Treatment of Carbon and Low-Alloyed Steels, in Perspektivnye materialy. Tom IV: Uchebnoe posobie (Perspective Materials. Vol. 4: A Tutorial), Merson, D.L., Ed., Tolyatti: Tolyatti Gos. Univ., 2011, pp. 123–207.

    Google Scholar 

  5. Makarov, A.V. and Korshunov, L.G., Improving Hardness and Wear Resistance of Laser Hardened Steel Surfaces Using Friction Treatment, J. Friction Wear, 2003, vol. 24, no. 3, pp. 301–306.

    Google Scholar 

  6. Makarov, A.V. and Korshunov, L.G., Strength and Wear Resistance of Nanocrystal Structures on Friction Surfaces of Steels with Martensitic Base, Russian Physics Journal, 2004, vol. 47, no. 8, pp. 857–871.

    Article  ADS  Google Scholar 

  7. Makarov, A.V., Korshunov, L.G., Solodova, I.L., and Malygina, I.Yu., Hardness, Heat Resistance and Tribological Properties of Annealed Carbon Steels Hardened in the Conditions of Sliding Friction, Deformatsiya i Razrushenie Materialov, 2006, no. 4, pp. 26–33.

  8. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Solodova, I.L., Raising the Heat and Wear Resistances of Hardened Carbon Steels by Friction Strengthening Treatment, Metal Sci. Heat Treat., 2007, vol. 49, nos. 3–4, pp. 150–156.

    Article  Google Scholar 

  9. Makarov, A.V., Korshunov, L.G., Vykhodets, V.B., et al., Effect of Strengthening Friction Treatment on the Chemical Composition, Structure, and Tribological Properties of a High-Carbon Steel, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 507–521.

    Article  ADS  Google Scholar 

  10. Lv, X.R., Wang, S.G., Liu, Y., et al., Effect of Nanocrystallization on Tribological Behaviors of Ingot Iron, Wear, 2008, vol. 264, pp. 535–541.

    Article  Google Scholar 

  11. Zhou, L., Liu, G., Han, Z., and Lu, K., Grain Size Effect on Wear Resistance of a Nanostructured AISI52100 Steel, Scripta Mater., 2008, vol. 58, pp. 445–448.

    Article  Google Scholar 

  12. Yan, W., Fang, L., Sun, K., and Xu, Y., Effect of Surface Work Hardening on Wear Behavior of Hadfield Steel, Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 542–549.

    Google Scholar 

  13. Korshunov, L.G., Makarov, A.V., and Chernenko, N.L., Structure Aspects of Wear Resistance of Martensitic Steels, Phys. Met. Metallogr., 1994, vol. 78, no. 4, pp. 442–453.

    Google Scholar 

  14. Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindenting and Its Possibilities), Moscow: Mashinostroenie, 2009.

    Google Scholar 

  15. Leyland, A. and Matthews, A., On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimized Tribological Behavior, Wear, 2000, vol. 246, pp. 1–11.

    Article  Google Scholar 

  16. Rusakov, A.A., Rentgenografiya metallov (X-ray of Metals), Moscow: Atomizdat, 1977.

    Google Scholar 

  17. Likhachev, V.A., Panin, V.E., Zasimchuk, E.E., et al., Kooperativnye deformatsionnye protsessy i lokalizatsiya deformatsii (Cooperative Deformation Processes and Localization of Deformation), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  18. Korshunov, L.G., Makarov, A.V., and Chernenko, N.L., Ultrafine Structures Formed upon Friction and Their Effect on the Tribological Properties of Steels, Phys. Met. Metallogr., 2000, vol. 90,suppl. 1, pp. S48–S58.

    Google Scholar 

  19. Makarov, A.V., Savrai, R.A., Pozdejeva, N.A., et al., Effect of Hardening Friction Treatment with Hard-Alloy Indenter on Microstructure, Mechanical Properties, and Deformation and Fracture Features of Constructional Steel under Static and Cyclic Tension, Surf. Coat. Technol., 2010, vol. 205, pp. 841–852.

    Article  Google Scholar 

  20. Vichuzhanin, D.A., Makarov, A.V., Smirnov, S.V., Pozdeeva, N.A. and Malygina, I.Yu., Stress and Strain and Damage during Frictional Strengthening Treatment of Flat Steel Surface with a Sliding Cylindrical Indenter, J. Mach. Manufact. Reliab., 2011, vol. 40, no. 6, pp. 554–560.

    Article  Google Scholar 

  21. Makarov, A.V., Korshunov, L.G., and Solodova, I.L., Wear Resistance and Strain-Hardening of Carbon and Low-Alloy Tool Steels at Sliding Friction under Heavy Loads, J. Friction Wear, 2000, vol. 21, no. 5, pp. 35–43.

    Google Scholar 

  22. Khrushchov, M.M. and Babichev, M.A., Abrazivnoe iznashivanie (Abrasive Wear), Moscow: Nauka, 1970.

    Google Scholar 

  23. Bouden, F.P. and Teibor, D., Trenie i smazka tverdykh tel (Friction and Lubrication of Solids), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  24. Kragel’skii, I.V., Trenie i iznos (Friction and Wear), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  25. Golego, N.L., Skhvatyvanie v mashinakh i metody ego ustraneniya (Seizure in Machines and Methods of Its Removal), Kiev: Tekhnika, 1966.

    Google Scholar 

  26. Kostetskii, B.I., Nosovskii, I.G., Karaulov, A.K., et al., Poverkhnostnaya prochnost’ materialov pri trenii (Surface Hardness of Materials during Friction), Kiev: Tekhnika, 1976.

    Google Scholar 

  27. Firstov, S.A., Gorban’, V.F., and Pechkovskii, E.P., Determination of Limite Values of Hardness, Elastic Deformation and Corresponding Stress of Materials by Automatic Indentation Method, Materialovedenie, 2008, no. 8, pp. 15–21.

  28. Mayrhofer, P.H., Mitterer, C., and Musil, J., Structure-Property Relationships in Single- and Dual-Phase Nanocrystalline Hard Coatings, Surf. Coat. Technol., 2003, vols. 174–175, pp. 725–731.

    Article  Google Scholar 

  29. Petrzhik, M.I., Shtanskii, D.V., and Levashov, E.A., Contemporary Methods of Estimation of Mechanical and Tribological Properties of Functional Surfaces, Materialy X mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Vysokie tekhnologii v promyshlennosti Rossii” (Proc. 10th Int. Sci.-Techn. Conf.’ High Technologies in Russian Industry’), Moscow: Tekhnomash, 2004, pp. 311–318.

    Google Scholar 

  30. Cheng, Y.T. and Cheng, C.M., Relationships between Hardness, Elastic Modulus and the Work of Indentation, Appl. Phys. Lett., 1998, vol. 73, no. 5, pp. 614–618.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, N.A. Pozdejeva, R.A. Savrai, A.S. Yurovskikh, I.Yu. Malygina, 2012, published in Trenie i Iznos, 2012, Vol. 33, No. 6, pp. 587–598.

About this article

Cite this article

Makarov, A.V., Pozdejeva, N.A., Savrai, R.A. et al. Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment. J. Frict. Wear 33, 433–442 (2012). https://doi.org/10.3103/S1068366612060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366612060050

Keywords

Navigation