Skip to main content

Nonequilibrium kinetics of phase transitions in the boundary friction mode

Abstract

A nonequilibrium evolution thermodynamic model is presented, which describes the processes developing in the boundary friction mode. The excessive volume parameter is introduced to describe the lubricant state; it has a minimum value in the case of the solid-like structure of the lubricant and increases during melting. The source of entropy growth which results from the external energy inleak during the deformation of the lubricant owing to the shear of the rubbing surfaces, is taken into account. It is shown that the stick-slip mode of motion occurs within wide ranges of the parameters; this is caused by periodic phase transitions of the first-order between the structural states of the lubricant. The effect of the shear velocity, load, and temperature on the pattern of stick-slip friction is studied.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Nanotribology and Nanomechanics. Bhushan, B., Ed., Berlin: Springer Verlag, 2005.

    Google Scholar 

  2. 2.

    Persson, B.N.J., Sliding Friction. Physical Principles and Applications, Berlin: Springer Verlag, 2000.

    MATH  Google Scholar 

  3. 3.

    Boiko, V.I., Valyaev, A.N., and Pogrebnyak, A.D., “Metal Modification by High-Power Pulsed Particle Beams” Phys.-Usp. 1999, vol. 42, pp. 1139–1166.

    ADS  Article  Google Scholar 

  4. 4.

    Metlov, L.S., Khomenko, A.V., and Lyashenko, I.A., Multidimensional Thermodynamic Potential for Descriptions of Ultrathin Lubricant Film Melting between Two Atomically Smooth Surfaces, Cond. Matt. Phys., 2011, vol. 14, p. 13001.

    Article  Google Scholar 

  5. 5.

    Popov, V.L., Contact Mechanics and Friction: Physical Principles and Applications, Berlin: Springer Verlag, 2010.

    MATH  Book  Google Scholar 

  6. 6.

    Pogrebnyak, A.D., Bratushka, S.N., Il’yashenko, M.V., et al., Tribological and Physical-Mechanical Properties of Protective Coatings from Ni-Cr-B-SiFe/WC-Co-Cr before and after Fission with a Plasma Jet, J. Friction Wear, 2011, vol. 32, pp. 84–90.

    Article  Google Scholar 

  7. 7.

    Yoshizawa, H. and Israelachvili, J., Fundamental Mechanisms of Interfacial Friction. 2. Stick-Slip Friction of Spherical and Chain Molecules, J. Phys. Chem., 1993, vol. 97, pp. 11300–11313.

    Article  Google Scholar 

  8. 8.

    Lyashenko, I.A., Tribological System in the Boundary Friction Mode under a Periodic External Action, Tech. Phys., 2011, vol. 56, pp. 869–876.

    Article  Google Scholar 

  9. 9.

    Lyashenko, I.A., First-Order Phase Transition between the Liquidlike and Solidlike Structures of a Boundary Lubricant, Tech. Phys., 2012, vol. 57, pp. 17–26.

    Article  Google Scholar 

  10. 10.

    Lee, R.-T., Yang, C.-R., and Chiou, Y.-C., A Procedure for Evaluating the Positioning Accuracy of Reciprocating Friction Drive Systems, Tribol. Int., 1996, vol. 29, pp. 395–404.

    Article  Google Scholar 

  11. 11.

    Yang, C.-R., Lee, R.-T., and Chiou, Y.-C., Study on Dynamic Friction Characteristics in Reciprocating Friction Drive System, Tribol. Int., 1997, vol. 30, pp. 719–731.

    Article  Google Scholar 

  12. 12.

    Lyashenko, I.A., Tribological Properties of Dry, Fluid, and Boundary Friction, Tech. Phys., 2011, vol. 56, pp. 701–707.

    Article  Google Scholar 

  13. 13.

    Filippov, A.E., Klafter, J., and Urbakh, M., Friction through Dynamical Formation and Rupture of Molecular Bonds, Phys. Rev. Lett., 2004, vol. 92, p. 135503.

    ADS  Article  Google Scholar 

  14. 14.

    Brener, E.A. and Marchenko, V.I., Frictional Shear Cracks, JETP Lett., 2002, vol. 76, pp. 211–214.

    ADS  Article  Google Scholar 

  15. 15.

    Smith, E.D., Robbins, M.O., and Cieplak, M., Friction on Adsorbed Monolayers, Phys. Rev. B: Condens. Matter, 1996, vol. 54, pp. 8252–8260.

    ADS  Article  Google Scholar 

  16. 16.

    Khomenko, A.V. and Lyashenko, I.A., Melting of Ultrathin Lubricant Film Due to Dissipative Heating of Friction Surfaces, Tech. Phys., 2007, vol. 52, pp. 12391243.

    Google Scholar 

  17. 17.

    Khomenko, A.V. and Lyashenko, Ya.A., Periodic Intermittent Regime of a Boundary Flow, Tech. Phys., 2010, vol. 55, pp. 26–32.

    Article  Google Scholar 

  18. 18.

    Khomenko, A.V., Lyashenko, I.A., and Borisyuk, V.N., Multifractal Analysis of Stress Time Series during Ultrathin Lubricant Film Melting, Fluct. Noise Lett., 2010, vol. 9, pp. 19–35.

    Article  Google Scholar 

  19. 19.

    Khomenko, A.V. and Lyashenko, I.A., Stochastic Theory of Ultrathin Lubricant Film Melting in the Stick-Slip Regime, Tech. Phys., 2005, vol. 50, pp. 1408–1416.

    Article  Google Scholar 

  20. 20.

    Khomenko, A.V. and Lyashenko, I.A., Hysteresis Phenomena during Melting of an Ultrathin Lubricant Film, Phys. Solid State, 2007, vol. 49, pp. 936–940.

    ADS  Article  Google Scholar 

  21. 21.

    Demirel, A.L. and Granick, S., Transition from Static to Kinetic Friction in a Model Lubricating System, J. Chem. Phys., 1998, vol. 109, pp. 6889–6897.

    ADS  Article  Google Scholar 

  22. 22.

    Reiter, G., Demirel, A.L., Peanasky, J., et al., Stick to Slip Transition and Adhesion of Lubricated Surfaces in Moving Contact, J. Chem. Phys., 1994, vol. 101, pp. 2606–2615.

    ADS  Article  Google Scholar 

  23. 23.

    Israelachvili, J., Adhesion Forces between Surfaces in Liquids and Condensable Vapors, Surf. Sci. Rep., 1992, vol. 14, pp. 109–159.

    ADS  Article  Google Scholar 

  24. 24.

    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Thermodynamics and Kinetics of Boundary Friction, Tribol. Int., 2011, vol. 44, pp. 476–482.

    Article  Google Scholar 

  25. 25.

    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Nonlinear Thermodynamic Model of Boundary Friction, J. Friction Wear, 2011, vol. 32, pp. 113–123.

    Article  Google Scholar 

  26. 26.

    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Phenomenological Theory for the Melting of a Thin Lubricant Film between Two Atomically Smooth Solid Surfaces, Tech. Phys., 2010, vol. 55, pp. 1193–1199.

    Article  Google Scholar 

  27. 27.

    Lyashenko, I.A., Metlov, L.S., Khomenko, A.V., Non-Equilibrium Stationary Modes of Boundary Friction, Zh. Nano-Elektr. Fiz., (J. Nano-Elektron. Phys.), 2011, vol. 3, pp. 59–69.

    Google Scholar 

  28. 28.

    Landau, L.D. and Lifshits, E.M., Theoretical Physics, Vol. 7. Theory of Elasticity, Moscow: Nauka, 1987; Oxford: Pergamon, 1993.

    Google Scholar 

  29. 29.

    Kachanov, L.M., Foundations of the Theory of Plasticity, Moscow: Nauka, 1969; Amsterdam: North-Holland Publ. Com., 1971.

    Google Scholar 

  30. 30.

    Luengo, G., Israelachvili, J., and Granick, S., Generalized Effects in Confined Fluids: New Friction Map for Boundary Lubrication, Wear, 1996, vol. 200, pp. 328–335.

    Article  Google Scholar 

  31. 31.

    Metlov, L.S., Formation of Internal Structure of Solids under Severe Load, Phys. Rev. E, 2010, vol. 81, p. 051121.

    ADS  Article  Google Scholar 

  32. 32.

    Olemskoi, A.I., Axiomatic Theory of Self-Organizing System, Physica A, 2002, vol. 310, pp. 223–233.

    ADS  MATH  Article  Google Scholar 

  33. 33.

    Olemskoi, A.I., Khomenko, A.V., and Kharchenko, D.O., Self-Organized Criticality within Fractional Lorenz Scheme, Physica A, 2003, vol. 323, pp. 263–293.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  34. 34.

    Popov, V.L., Thermodynamics and Kinetics of Shear-Induced Melting of a Thin Layer of Lubricant Confined between Solids, Tech. Phys., 2001, vol. 46, pp. 605–615.

    Article  Google Scholar 

  35. 35.

    Gee, M.L., McGuiggan, P.M., and Israelachvili, J.N., Liquid to Solidlike Transitions of Molecularly Thin Films under Shear, J. Chem. Phys., 1990, vol. 93, pp. 1895–1906.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Lyashenko.

Additional information

Original Russian Text © I.A. Lyashenko, L.S. Metlov, A.V. Khomenko, S.N. Chepulskyi, 2012, published in Trenie i Iznos, 2012, Vol. 33, No. 4, pp. 295–306.

About this article

Cite this article

Lyashenko, I.A., Metlov, L.S., Khomenko, A.V. et al. Nonequilibrium kinetics of phase transitions in the boundary friction mode. J. Frict. Wear 33, 244–252 (2012). https://doi.org/10.3103/S106836661204006X

Download citation

Keywords

  • lubricant
  • friction force
  • shear stresses and strains
  • entropy
  • internal energy
  • phase transition
  • stickslip mode