Journal of Friction and Wear

, Volume 33, Issue 4, pp 244–252 | Cite as

Nonequilibrium kinetics of phase transitions in the boundary friction mode

  • I. A. Lyashenko
  • L. S. Metlov
  • A. V. Khomenko
  • S. N. Chepulskyi
Article

Abstract

A nonequilibrium evolution thermodynamic model is presented, which describes the processes developing in the boundary friction mode. The excessive volume parameter is introduced to describe the lubricant state; it has a minimum value in the case of the solid-like structure of the lubricant and increases during melting. The source of entropy growth which results from the external energy inleak during the deformation of the lubricant owing to the shear of the rubbing surfaces, is taken into account. It is shown that the stick-slip mode of motion occurs within wide ranges of the parameters; this is caused by periodic phase transitions of the first-order between the structural states of the lubricant. The effect of the shear velocity, load, and temperature on the pattern of stick-slip friction is studied.

Keywords

lubricant friction force shear stresses and strains entropy internal energy phase transition stickslip mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nanotribology and Nanomechanics. Bhushan, B., Ed., Berlin: Springer Verlag, 2005.Google Scholar
  2. 2.
    Persson, B.N.J., Sliding Friction. Physical Principles and Applications, Berlin: Springer Verlag, 2000.MATHGoogle Scholar
  3. 3.
    Boiko, V.I., Valyaev, A.N., and Pogrebnyak, A.D., “Metal Modification by High-Power Pulsed Particle Beams” Phys.-Usp. 1999, vol. 42, pp. 1139–1166.ADSCrossRefGoogle Scholar
  4. 4.
    Metlov, L.S., Khomenko, A.V., and Lyashenko, I.A., Multidimensional Thermodynamic Potential for Descriptions of Ultrathin Lubricant Film Melting between Two Atomically Smooth Surfaces, Cond. Matt. Phys., 2011, vol. 14, p. 13001.CrossRefGoogle Scholar
  5. 5.
    Popov, V.L., Contact Mechanics and Friction: Physical Principles and Applications, Berlin: Springer Verlag, 2010.MATHCrossRefGoogle Scholar
  6. 6.
    Pogrebnyak, A.D., Bratushka, S.N., Il’yashenko, M.V., et al., Tribological and Physical-Mechanical Properties of Protective Coatings from Ni-Cr-B-SiFe/WC-Co-Cr before and after Fission with a Plasma Jet, J. Friction Wear, 2011, vol. 32, pp. 84–90.CrossRefGoogle Scholar
  7. 7.
    Yoshizawa, H. and Israelachvili, J., Fundamental Mechanisms of Interfacial Friction. 2. Stick-Slip Friction of Spherical and Chain Molecules, J. Phys. Chem., 1993, vol. 97, pp. 11300–11313.CrossRefGoogle Scholar
  8. 8.
    Lyashenko, I.A., Tribological System in the Boundary Friction Mode under a Periodic External Action, Tech. Phys., 2011, vol. 56, pp. 869–876.CrossRefGoogle Scholar
  9. 9.
    Lyashenko, I.A., First-Order Phase Transition between the Liquidlike and Solidlike Structures of a Boundary Lubricant, Tech. Phys., 2012, vol. 57, pp. 17–26.CrossRefGoogle Scholar
  10. 10.
    Lee, R.-T., Yang, C.-R., and Chiou, Y.-C., A Procedure for Evaluating the Positioning Accuracy of Reciprocating Friction Drive Systems, Tribol. Int., 1996, vol. 29, pp. 395–404.CrossRefGoogle Scholar
  11. 11.
    Yang, C.-R., Lee, R.-T., and Chiou, Y.-C., Study on Dynamic Friction Characteristics in Reciprocating Friction Drive System, Tribol. Int., 1997, vol. 30, pp. 719–731.CrossRefGoogle Scholar
  12. 12.
    Lyashenko, I.A., Tribological Properties of Dry, Fluid, and Boundary Friction, Tech. Phys., 2011, vol. 56, pp. 701–707.CrossRefGoogle Scholar
  13. 13.
    Filippov, A.E., Klafter, J., and Urbakh, M., Friction through Dynamical Formation and Rupture of Molecular Bonds, Phys. Rev. Lett., 2004, vol. 92, p. 135503.ADSCrossRefGoogle Scholar
  14. 14.
    Brener, E.A. and Marchenko, V.I., Frictional Shear Cracks, JETP Lett., 2002, vol. 76, pp. 211–214.ADSCrossRefGoogle Scholar
  15. 15.
    Smith, E.D., Robbins, M.O., and Cieplak, M., Friction on Adsorbed Monolayers, Phys. Rev. B: Condens. Matter, 1996, vol. 54, pp. 8252–8260.ADSCrossRefGoogle Scholar
  16. 16.
    Khomenko, A.V. and Lyashenko, I.A., Melting of Ultrathin Lubricant Film Due to Dissipative Heating of Friction Surfaces, Tech. Phys., 2007, vol. 52, pp. 12391243.Google Scholar
  17. 17.
    Khomenko, A.V. and Lyashenko, Ya.A., Periodic Intermittent Regime of a Boundary Flow, Tech. Phys., 2010, vol. 55, pp. 26–32.CrossRefGoogle Scholar
  18. 18.
    Khomenko, A.V., Lyashenko, I.A., and Borisyuk, V.N., Multifractal Analysis of Stress Time Series during Ultrathin Lubricant Film Melting, Fluct. Noise Lett., 2010, vol. 9, pp. 19–35.CrossRefGoogle Scholar
  19. 19.
    Khomenko, A.V. and Lyashenko, I.A., Stochastic Theory of Ultrathin Lubricant Film Melting in the Stick-Slip Regime, Tech. Phys., 2005, vol. 50, pp. 1408–1416.CrossRefGoogle Scholar
  20. 20.
    Khomenko, A.V. and Lyashenko, I.A., Hysteresis Phenomena during Melting of an Ultrathin Lubricant Film, Phys. Solid State, 2007, vol. 49, pp. 936–940.ADSCrossRefGoogle Scholar
  21. 21.
    Demirel, A.L. and Granick, S., Transition from Static to Kinetic Friction in a Model Lubricating System, J. Chem. Phys., 1998, vol. 109, pp. 6889–6897.ADSCrossRefGoogle Scholar
  22. 22.
    Reiter, G., Demirel, A.L., Peanasky, J., et al., Stick to Slip Transition and Adhesion of Lubricated Surfaces in Moving Contact, J. Chem. Phys., 1994, vol. 101, pp. 2606–2615.ADSCrossRefGoogle Scholar
  23. 23.
    Israelachvili, J., Adhesion Forces between Surfaces in Liquids and Condensable Vapors, Surf. Sci. Rep., 1992, vol. 14, pp. 109–159.ADSCrossRefGoogle Scholar
  24. 24.
    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Thermodynamics and Kinetics of Boundary Friction, Tribol. Int., 2011, vol. 44, pp. 476–482.CrossRefGoogle Scholar
  25. 25.
    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Nonlinear Thermodynamic Model of Boundary Friction, J. Friction Wear, 2011, vol. 32, pp. 113–123.CrossRefGoogle Scholar
  26. 26.
    Lyashenko, I.A., Khomenko, A.V., and Metlov, L.S., Phenomenological Theory for the Melting of a Thin Lubricant Film between Two Atomically Smooth Solid Surfaces, Tech. Phys., 2010, vol. 55, pp. 1193–1199.CrossRefGoogle Scholar
  27. 27.
    Lyashenko, I.A., Metlov, L.S., Khomenko, A.V., Non-Equilibrium Stationary Modes of Boundary Friction, Zh. Nano-Elektr. Fiz., (J. Nano-Elektron. Phys.), 2011, vol. 3, pp. 59–69.Google Scholar
  28. 28.
    Landau, L.D. and Lifshits, E.M., Theoretical Physics, Vol. 7. Theory of Elasticity, Moscow: Nauka, 1987; Oxford: Pergamon, 1993.Google Scholar
  29. 29.
    Kachanov, L.M., Foundations of the Theory of Plasticity, Moscow: Nauka, 1969; Amsterdam: North-Holland Publ. Com., 1971.Google Scholar
  30. 30.
    Luengo, G., Israelachvili, J., and Granick, S., Generalized Effects in Confined Fluids: New Friction Map for Boundary Lubrication, Wear, 1996, vol. 200, pp. 328–335.CrossRefGoogle Scholar
  31. 31.
    Metlov, L.S., Formation of Internal Structure of Solids under Severe Load, Phys. Rev. E, 2010, vol. 81, p. 051121.ADSCrossRefGoogle Scholar
  32. 32.
    Olemskoi, A.I., Axiomatic Theory of Self-Organizing System, Physica A, 2002, vol. 310, pp. 223–233.ADSMATHCrossRefGoogle Scholar
  33. 33.
    Olemskoi, A.I., Khomenko, A.V., and Kharchenko, D.O., Self-Organized Criticality within Fractional Lorenz Scheme, Physica A, 2003, vol. 323, pp. 263–293.MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Popov, V.L., Thermodynamics and Kinetics of Shear-Induced Melting of a Thin Layer of Lubricant Confined between Solids, Tech. Phys., 2001, vol. 46, pp. 605–615.CrossRefGoogle Scholar
  35. 35.
    Gee, M.L., McGuiggan, P.M., and Israelachvili, J.N., Liquid to Solidlike Transitions of Molecularly Thin Films under Shear, J. Chem. Phys., 1990, vol. 93, pp. 1895–1906.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • I. A. Lyashenko
    • 1
  • L. S. Metlov
    • 2
  • A. V. Khomenko
    • 1
  • S. N. Chepulskyi
    • 1
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Donetsk Institute for Physics and Engineering named after A.A. GalkinNational Academy of Sciences of UkraineDonetskUkraine

Personalised recommendations