Skip to main content
Log in

Influence of liquid meniscus on surface forces

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

The condensation of water in the gaps between members of microelecromechanical systems and precision friction units is caused by the presence of water vapors in air. The formation of liquid meniscus induces an additional force and affects considerably other surface forces. Numerical simulation was used to determine the meniscus and Van der Waals forces depending on the distance between the bodies in contact. Theoretical dependencies are used when interpreting experimental data obtained with the contact adhesion meter. Different factors that affect surface interaction and the application of the proposed approach to micro-and nanotribology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mastrangelo, C.H., ADhesion-Related Failure Mechanisms in Micromechanical Devices, Trib. Lett., 1997, no. 3, pp. 223–238.

  2. Niels, T., Tonny, S., and Henri, J., Stiction in Surface Micromachining, J. Micromech. Microeng., 1996, no. 6, pp. 385–397.

  3. Komvopoulos, K., Surface Engineering and Microtribology for Microelectromechanical Systems, Wear, 1996, vol. 200, pp. 305–327.

    Article  Google Scholar 

  4. Maboudian, R. and Howe, R.T., Critical Review: Adhesion in Surface Microelectromechanical Structures, J. Vac. Sci. Technol. B, 1997, vol. 15, no. 1, pp. 1–20.

    Article  Google Scholar 

  5. Mercado, L.L., Kuo, S.-M., Tom, L.T.-Yu., and Liu, L., A Mechanical Approach to Overcome RF MEMS Switch Stiction Problem, Proc. Electr. Comp. and Tech. Conf., New Orleans, 2003, pp. 377–384.

  6. Binggeli, M. and Mate, C.M., Influence of Capillary Condensation of Water on Nanotribology Studied by Force Microscopy, Appl. Phys. Lett., 1994, vol. 65, no. 4, pp. 415–417.

    Article  ADS  Google Scholar 

  7. Scherge, M., Li, X., and Schaefer, J.A., The Effect of Water on Friction of MEMS, Trib. Lett., 1999, vol. 6, nos. 3–4, pp. 215–220.

    Article  Google Scholar 

  8. Tian, X. and Bhushan, B., The Micro-Meniscus Effect of Thin Liquid Film on the Static Friction of Rough Surface Contact, J. Phys. D: Appl. Phys., 1996, vol. 29, pp. 163–178.

    Article  ADS  Google Scholar 

  9. Ando, Y., The Effect of Relative Humidity on Friction and Pull-Off Forces Measured on Submicron-Size Asperity Arrays, Wear, 2000, vol. 238, pp. 12–19.

    Article  Google Scholar 

  10. Riedo, E., Palaci, I., Boragno, C., and Brune, H., The 2/3 Power Law Dependence of Capillary Force on Normal Load in Nanoscopic Friction, J. Phys. Chem. B, 2004, vol. 108, pp. 5324–5328.

    Article  Google Scholar 

  11. Houston, M., Maboudian, R., and Howe, R.T., Self-Assembled Monolayer Films as Durable Anti-Stiction Coatings for Polysilicon Microstructures, Proc. Int. Workshop on Solid-State Sens. and Act., Hilton, 1996, pp. 42–47.

  12. Maboudian, R., Ashurst, W.R., and Carraro, C., Self-Assembled Monolayers as Anti-Stiction Coatings for MEMS: Characteristics and Recent Developments, Sensors and Actuators, 2000, vol. A82, pp. 219–223.

    Google Scholar 

  13. Ashurst, W.R., Yau, C., Carraro, C., et al., Alkene Based Films as Anti-Stiction Coatings for Polysilicon MEMS, Sensors and Actuators, 2001, vol. A91, pp. 239–248.

    Google Scholar 

  14. Ashurst, W.R., Carraro, C., Maboudian, R., and Frey, W., Wafer Level Anti-Stiction Coatings for MEMS, Sensors and Actuators, 2003, vol. 104, pp. 213–221.

    Article  Google Scholar 

  15. http://home.wanadoo.nl/scslai/lotus.pdf.

  16. http://www.botanik.uni-bonn.de/system/bionik flash.html.

  17. Persson, J., Albohr, O., Tartaglino, U., et al., On the Nature of Surface Roughness with Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion, J. Phys. Condens. Matter, 2005, vol. 17, pp. R1–R62.

    Article  ADS  Google Scholar 

  18. Tayebi, N. and Polikarpou, A.A., Reducing the Effects of Adhesion and Friction in Microelectromechanical Systems “MEMS” through Surface Roughening: Comparison between Theory and Experiments, J. Appl. Phys., 2005, vol. 98, pp. 073528-1–073528-13.

    Article  Google Scholar 

  19. Onda, T., Shibuichi, S., Saton, N., and Tsujii, K., Superhydrophobic Fractal Surfaces, Langmuir, 1996, vol. 12, pp. 2125–2127.

    Article  Google Scholar 

  20. De Bisschop, F.R., Wilfried, J., and Rigolei, L., A Physical Model for Liquid Capillary Bridges between Adsorptive Solid Spheres, J. Colloid and Interface Sci., 1982, vol. 88, no. 1, pp. 117–128.

    Article  Google Scholar 

  21. Fortes, M.A., Axisymmetric Liquid Bridges between Parallel Plates, J. Colloid and Interface Sci., 1982, vol. 88, no. 2, pp. 338–352.

    Article  Google Scholar 

  22. Aveyard, R., Adams, M.J., Paunov, V.N., and Nees, D., Capillary Condensation of Vapors between Two Solid Surfaces: Effect of Line Tension and Surface Forces, Phys. Chem. Chem. Phys., 1999, vol. 1, pp. 155–163.

    Article  Google Scholar 

  23. Willett, C.D., Adams, M.J., Johnson, S.A., and Seville, J.P.K., Capillary Bridges between Two Spherical Bodies, Langmuir, 2000, vol. 16, pp. 9396–9405.

    Article  Google Scholar 

  24. Stifter, T., Marti, O., and Bhushan, B., Theoretical Investigation of the Distance Dependence of Capillary and van der Waals Forces in Scanning Force Microscopy, Phys. Rew. B, 2000, vol. 62, no. 20, pp. 13667–13673.

    Article  ADS  Google Scholar 

  25. Orr, F.M., Scriven, L.E., and Rivas, A.P., Pendular Rings between Solids: Meniscus Properties and Capillary Force, J. Fluid Mech., 1975, vol. 67, pp. 723–742.

    Article  MATH  ADS  Google Scholar 

  26. Fisher, L.R. and Israelachvili, J.N., Experimental Studies on the Applicability of the Kelvin Equation to Highly Curved Concave Menisci, J. Colloid and Interface Sci., 1981, vol. 80, no. 2, pp. 528–541.

    Article  Google Scholar 

  27. Bhushan, B., Adhesion and Stiction: Mechanisms, Measurement Techniques, and Methods for Reduction, J. Vac. Sci. Technol., 2003, vol. 21, no. 60, pp. 2262–2296.

    Google Scholar 

  28. Matsuoka, H., Fukui, S., and Morishita, H., Dynamics of Liquid Meniscus Bridge of Intermittent Contact Slider, Trans. of Magnetics, 2002, vol. 38, no. 5, pp. 2135–2137.

    Article  Google Scholar 

  29. Matsuoka, H., Matsumoto, S., and Fukui, S., Dynamic Meniscus Models for MEMS Elements, Microsyst. Technol., 2005, vol. 11, 1132–1137.

    Article  Google Scholar 

  30. Crassous, J., Charlaix, J.-L., and Loubet, E., Nanoscale Investigation of Wetting Dynamics with a Surface Force Apparatus, Phys. Rew. Lett., 1997, vol. 78, no. 12, pp. 2425–2428.

    Article  ADS  Google Scholar 

  31. Restagno, F., A New Surface Forces Apparatus for Nanorheology, Rew. Sci. Instrum., 2002, vol. 73, no. 6, pp. 2292–2297.

    Article  ADS  Google Scholar 

  32. Pitois, O., Moucheront, P., and Chateau, X., Liquid Bridge between Two Moving Spheres: an Experimental Study of Viscosity Effect, J. Colloid and Interface Sci., 2000, vol. 231, pp. 26–31.

    Article  Google Scholar 

  33. Bocquet, L., Charlaix, E., Ciliberto, S., and Crassous, J., Moisture-Induced Ageing in Granular Media and the Kinetics of Capillary Condensation, Nature, 1998, vol. 396, no. 24, pp. 735–737.

    Article  ADS  Google Scholar 

  34. Riedo, E., Levy, F., and Brune, H., Kinetics of Capillary Condensation in Nanoscopic Sliding Friction, Phys. Rew. Lett., 2002, vol. 88, no. 18, pp. 185505-1–185505-4.

    Google Scholar 

  35. Kohonen, M.M., Maeda, N., and Christenson, H.K., Kinetics of Capillary Condensation in Nanoscale Pore, Phys. Rew. Lett., 1999, vol. 82, no. 23, pp. 4667–4670.

    Article  ADS  Google Scholar 

  36. Szoszkiewicz, R. and Riedo, E., Nucleation Time of Nanoscale Water Bridges, Phys. Rew. Lett., 2005, vol. 95, pp. 135502-1–135502-4.

    ADS  Google Scholar 

  37. Mazzone, D.N., Tardos, G.I., and Pfeffer, R., The Effect of Gravity on the Shape and Strength of Liquid Bridge between Two Spheres, J. Colloid and Interface Sci., 1986, vol. 113, no. 2, pp. 544–566.

    Article  Google Scholar 

  38. Bayramli, E. and van de Ven, T.G.M., An Experimental Study of Liquid Bridges between Spheres in a Gravitational Field, J. Colloid and Interface Sci., 1987, vol. 116, no. 2, pp. 503–510.

    Article  Google Scholar 

  39. Boucher, E.A., Evans, M.J.B., and McGarry, S., Capillary Phenomena. Fluid Bridges between Horizontal Solid Plates in a Gravitational Field, J. Colloid and Interface Sci., 1982, vol. 89, no. 1, pp. 154–165.

    Article  Google Scholar 

  40. Georges, J.M., Millot, S., Loubet, J.L., and Tonck, A., Drainage of Thin Liquid Films between Relatively Smooth Surfaces, J. Chem. Phys., 1993, vol. 98, no. 9, pp. 7345–7359.

    Article  ADS  Google Scholar 

  41. Zitsler, L., Herminghaus, S., and Mugele, F., Capillary Forces in Tapping Mode Atomic Force Microscopy, Phys. Rev. B, 2002, vol. 66, pp. 155436-1–155436-8.

    ADS  Google Scholar 

  42. Israelachvili, J.N., Intermolecular and Surface Forces, N.Y.: Acad. Press, 1991.

    Google Scholar 

  43. Abrikosova, I.I. and Deryagin, B.V., Measurement of Contact Adhesion and Attraction Forces between Engineering Surfaces, J. Tekh. Fiz., 1951, vol. 21, no. 8, pp. 945–950.

    Google Scholar 

  44. Grigoriev, A.Ya., Dubravin, A.M., Kovalev, A.V., et al., Measurement of Contact Adhesion and Attraction between the Engineering Surfaces, J. of Friction and Wear, 2003, vol. 24, no. 4, pp. 51–58.

    Google Scholar 

  45. Myshkin, N.K., Grigoriev, A.Ya., Dubravin, A.M., et al., Instruments for Adhesion and Friction Measurements at Micro/Nano Scale, Proc. Int. Conf. “Viennano”, Vienna, 2005, pp. 213–218.

  46. Myshkin, N.K., Grigoriev, A.Ya., Dubravin, A.M., et al., Experimental Equipment for Interfacial Force and Friction Measurements of Microscale Samples, Proc. 14 th Int. Coll. on Tribology, Esslingen, 2004, vol. 1, pp. 73–78.

    Google Scholar 

  47. Fisher, L.R. and Israelachvili, J.N., Direct Measurement of the Effect of Meniscus Forces on Adhesion: a Study of Applicability of the Macroscopic Thermodynamics to Microscopic Liquid Interfaces, J. Colloid and Interface Sci., 1981, vol. 3, pp. 303–319.

    Google Scholar 

  48. Merlijn van Spengen, W., Puers, R., de Wolf, I., A Physical Model to Predict Stiction in MEMS, J. Micromech. Microeng., 2002, vol. 12, pp. 702–713.

    Article  ADS  Google Scholar 

  49. Kohonen, M.M. and Christenson, H.K., Capillary Condensation of Water between Rinsed Mica Surfaces, Langmuir, 2000, vol. 16, pp. 7285–7288.

    Article  Google Scholar 

  50. Jang, J., Schatz, G.C., and Ratner, M.A., Capillary Force in Atomic Force Microscopy, J. Chem. Phys., 2000, vol. 120, no. 3, pp. 1157–1160.

    Article  ADS  Google Scholar 

  51. He, M., Blum, A.S., Aston, D.E., et al., Critical Phenomena of Water Bridges in Nanoasperity Contacts, J. Chem. Phys., 2001, vol. 114, no. 3, pp. 1355–1360.

    Article  ADS  Google Scholar 

  52. Szoszkiewicz, R. and Riedo, E., Nanoscopic Friction as a Probe of Local Phase Transitions, Appl. Phys. Lett., 2005, vol. 87, pp. 033105-1–033105-3.

    Article  Google Scholar 

  53. Zhang, B. and Nakajima, A., Nanometer Deformation Caused by the Laplace Pressure and the Possibility of Its Effect on Surface Tension Measurements, J. Colloid and Interface Sci., 1999 vol. 211, pp. 114–121.

    Article  Google Scholar 

  54. Bronstein, I.N. and Semendyaev, K.A., Spravochnik po matematike dlya inzhenerov i uchashchikhsya VTU-zov (Reference Book on Mathematics for Engineers and University Students), Moscow: Nauka, 1964.

    Google Scholar 

  55. Dahneke, B., The Influence of Flattening on the Adhesion of Particles, J. Colloid and Interface Sci., 1972, vol. 40, no. 4, pp. 1–13.

    Article  Google Scholar 

  56. Seemann, R., Herminghaus, S., and Jacobs, K., Gaining Control of Pattern Formation of Dewetting Liquid Films, J. Phys.: Condens. Matt., 2001, vol. 13, pp. 4925–4938.

    Article  ADS  Google Scholar 

  57. Attard, P., Schulz, J.C., and Rutland, M.W., Dynamic Surface Force Measurement. I. van der Waals Collisions, Rew. Sci. Instrum., 1998, vol. 69, no. 11, pp. 3852–3866.

    Article  ADS  Google Scholar 

  58. Dubravin, A.M., Komkov, O.Yu., and Myshkin N.K., Local Tribometry Based on Scanning Probe Microscope, J. of Friction and Wear, 2005, vol. 25, no. 3, pp. 39–47.

    Google Scholar 

  59. Liu, H., Ahmed, I.-U., and Schergeu, M., Microtribological Properties of Silicon and Silicon Coated with Diamond Like Carbon, Octadecyltrichlorosilane and Stearic Acid Cadmium Salt Films, Thin Solid Films, 2001, vol. 381, pp. 135–142.

    Article  Google Scholar 

  60. Bhushan, B., Liu, H., and Hsu, S.M., Adhesion and Friction Studies of Silicon and Hydrophobic and Low Friction Films and Investigation of Scale Effect, J. of Tribology, 2004 vol. 126, pp. 583–590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.Yu. Komkov, 2007, published in Trenie i Iznos, 2007, Vol. 28, No. 1, pp. 21–32.

About this article

Cite this article

Komkov, O.Y. Influence of liquid meniscus on surface forces. J. Frict. Wear 28, 19–31 (2007). https://doi.org/10.3103/S1068366607010035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366607010035

Key words

Navigation