Skip to main content
Log in

Improving Tube Furnaces for Delayed Coking

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The influence of the parameters of a tube furnace for delayed coking on the pressure drop, critical temperature, and salt content of the coil is investigated. A mathematical model of the furnace is proposed. Optimal coil parameters are determined. The parameters of the furnace have a significant influence on the operational safety, the coke buildup within the tubes, and the interval between repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

REFERENCES

  1. Makarova, A.V. and Naletov, A.Yu., Modernizing furnace systems at oil refineries for multifunctionality, Coke Chem., 2020, vol. 63, no. 12, pp. 586–591. https://doi.org/10.3103/S1068364X20120054

    Article  Google Scholar 

  2. Naletov, V.A., Optimal heating system organization in coke ovens, Coke Chem., 2017, vol. 60, no. 2, pp. 71–74. https://doi.org/10.3103/S1068364X17020041

    Article  Google Scholar 

  3. Naletov, V.A., Intensification of heat transfer in the heating ducts of coke batteries, Coke Chem., 2017, vol. 60, no. 3, pp. 113–118. https://doi.org/10.3103/S1068364X17030036

    Article  Google Scholar 

  4. Shakirzyanova, G.I., Sladovskaya, O.Yu., and Sladovskii, A.G., Delayed coking as efficient technology for advancing oil refinement, Vestn. Tekhnologicheskogo Univ., 2017, vol. 20, no. 14, pp. 75–78.

    CAS  Google Scholar 

  5. Sabirova, T.M., Osnovy tekhnologii ulavlivaniya i pererabotki khimicheskikh produktov koksovaniya. Uchebnoe posobie (Foundations of Technology for Capturing and Processing Chemical Products of Coking: Textbook), Ekaterinburg: Izd-vo Ural. Univ., 2018.

  6. Gadzhieva, U.R., Ledenev, S.M., and Gadzhiev, R.B., Analysis of operation of installation for delayed coking of oil remnants, Sovrem. Naukoemkie Tekhnol., 2014, no. 1, p. 90.

  7. Terent’eva, N.A. and Khaibunasova, R.R., Analysis of operation of installation of delayed coking at OOO Lukoil-Volgogradneftepereraboka, Vestn. Tekhnol. Univ., 2015, vol. 18, no. 10, pp. 66–70.

    Google Scholar 

  8. Spravochnik koksokhimika (Reference Book of Coke Chemist), vol. 2: Proizvodstvo koksa (Coke Production), Rudyka, V.I. and Zingerman, Yu.E., Eds., Kharkov: INZhEK, 2014.

  9. Borges, C.N., Mendes, M.A., and Brito Alves, R.M., Mathematical modeling of an industrial delayed coking unit, Comput. Aided Chem. Eng., 2015, vol. 37, pp. 515–520. https://doi.org/10.1016/B978-0-444-63578-5.50081-5

    Article  CAS  Google Scholar 

  10. Bikbulatova, A.M., Stages of evolution and development of Russian production of petcoke by the method of delayed coking (on example of Novoufimsky Oil Refinery), Cand. Sci. (Eng.) Dissertation, Ufa, 2002.

  11. Getting to Know Minitab® 16, Minitab Inc., 2021.

  12. Yudin, Yu.V., Maisuradze, M.V., and Vodolazskii, F.V., Organizatsiya i matematicheskoe planirovanie eksperimenta. Uchebnoe posobie (Organization and Mathematical Planning of Experiment), Ekaterinburg: Izd-vo Ural. Univ., 2018.

  13. Borges, C., Mendes, M., and Alves, R., Mathematical modeling of an industrial delayed coking unit, 12th Int. Symp. on Process Systems Engineering and 25th Eur. Symp. on Computer Aided Process Engineering, Copenhagen, 2015, Elsevier, 2015, pp. 515–520. https://doi.org/10.1016/b978-0-444-63578-5.50081-5

  14. Ponomarenko, E.A. and Yablokova, M.A., Improving the efficiency of the delayed coking unit, Sovrem. Naukoemkie Tekhnol., 2016, no. 5, pp. 481–486.

  15. Zubakhin, N.P., Klushin, V.N., Starostin, K.G., and Nistratov, A.V., Purification of coke-plant waste by carbon adsorbents, Coke Chem., 2015, vol. 58, pp. 75–78. https://doi.org/10.3103/S1068364X15020088

    Article  Google Scholar 

  16. Sidorov, O.Yu. and Aristova, N.A., Gas combustion in the heating channel of a coke oven, Coke Chem., 2017, vol. 60, no. 8, pp. 316–321. https://doi.org/10.3103/s1068364x17080063

    Article  Google Scholar 

  17. Nikic, M., Optimal selection of delayed coke drum materials based on ASME Section II Material Property Data, Master’s Thesis, Alberta, Canada: Univ. of Alberta, 2013.

  18. Siskin, M., Ferrughelli, D.T., Gorbaty, M.L., Kelemen, S.R., and Brown, L.D., Delayed coking process, US Patent 8147676 B2, 2012.

  19. Koseoglu, O.R., Process for delayed coking of wholecrude oil. US Patent 20120298552 A1, 2015.

  20. Mukhamadeev, D.K., Valyavin, G.G., and Zaporin, V.P., Methods of cleaning of chimneys of installation for retarded coking from coke, Neftegaz. Delo: Elektronnyi Nauchn. Zh., 2014, no. 2, p. 166–168.

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Yusubov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusubov, F.V. Improving Tube Furnaces for Delayed Coking. Coke Chem. 66, 205–215 (2023). https://doi.org/10.3103/S1068364X23700734

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23700734

Navigation