Skip to main content
Log in

Dimensional Changes of Molecularly Oriented Domains in Coke

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The following characteristics of molecularly oriented coke domains are investigated as a function of their position within the coke and the distance from the coke oven’s heating wall: their height Lc and width La, the interplane distance d002, the domain density ρ, and the number of layers N within the domain. It is found that Lc and La decrease nonlinearly with increase in the distance from the coke oven’s heating wall. The coke’s structural strength Πc (State Standard GOST 9521–2017) is greater for positions near the wall than for the central region of the coke. The ash content and chemical composition of coke samples in the >0.1 mm and <0.1 mm size classes are determined after crushing in a mill. On the basis of the results of this research and literature analysis, it is established that there is no reliable mathematical model relating the high-temperature characteristics CRI and CSR with the cold mechanical strength M10 and M25. Hence, in broad coke ovens, with constant batch composition, the coke produced may be regarded as of high quality in terms of M10 and M25 but of low quality in terms of CRI and CSR. If the variation in the characteristics of the molecularly oriented domains and the strength of the coke after reaction with CO2 (CSR) are compared as a function of the distance from the coke oven’s heating wall, it is clear that the parameters Lc, La, and d002 may be used to create a model capable of predicting CSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Lipatnikov, A.V., Shmelyova, A.E., Stepanov, E.N., and Shnayder, D.A., Mathematical modeling and optimization of raw coal consumption in PJSC MMK, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2018, vol. 16, no. 4, pp. 30–38. https://doi.org/10.18503/1995-2732-2018-16-3-30-38

  2. Smirnov, A.N. and Alekseev, D.I., Comparison and adequacy analysis of the mathematical models for predicting the M25 and M10 coke quality indices, Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2017, vol. 15, no. 3, pp. 62–67. https://doi.org/10.18503/1995-2732-2017-15-3-62-67

  3. Alekseev, D.I., Krylova, S.A., Gorlenko, D.A., Zhidkov, M.Yu., Gelivanov, A.M., Islamgulov, R.I., and Shaykhislamova, T.A., Dependence of CRI and CSR on the dimensions of oriented molecular domains and the ash composition of the coke, Coke Chem., 2023, vol. 66, no. 3, pp. 109–123. https://doi.org/10.3103/S1068364X23700631

    Article  CAS  Google Scholar 

  4. Stepanov, E.N., Melnikov, I.I., Bulanovich, O.A., Chuykina, A.V., Shmeleva, A.E., and Alekseev, D.I., Assessing the value of coal concentrates by serial coking, Coke Chem., 2021, vol. 64, no. 12, pp. 537–541. https://doi.org/10.3103/S1068364X21120085

    Article  CAS  Google Scholar 

  5. Flores, B.D., Borrego, A.G., and Diez, M.A., How coke optical texture became a relevant tool for understanding coal blending and coke quality, Fuel Process Technol, 2017, vol. 164, pp. 13–23. https://doi.org/10.1016/j.fuproc.2017.04.015

    Article  CAS  Google Scholar 

  6. Koszorek, A., Krzesińska, M., Pusz, S., Pilawa, B., and Kwiecińska, B., Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability, Int. J. Coal Geol., 2009, vol. 77, nos. 3–4, pp. 363–371. https://doi.org/10.1016/j.coal.2008.07.005

    Article  CAS  Google Scholar 

  7. Gray, R.J. and Devanney, K.F., Coke carbon forms: Microscopic classification and industrial applications, Int. J. Coal Geol., 1986, vol. 6, no. 3, pp. 277–297. https://doi.org/10.1016/0166-5162(86)90005-4

    Article  CAS  Google Scholar 

  8. Sozinov, S.A., Popova, A.N., Dudnikova, Yu.N., and Ismagilov, Z.R., Structure and texture of industrial coke samples: A comparison, Coke Chem., 2021, vol. 64, no. 10, pp. 451–459. https://doi.org/10.3103/S1068364X21100069

    Article  CAS  Google Scholar 

  9. Xing, X., Guangqing, Z., Dell’Amico, M., Ciezki, G., Meng, Q., and Ostrovski, O., Effect of annealing on properties of carbonaceous materials. Part II: Porosity and pore geometry, Metall. Mater. Trans. B, 2013, vol. 44, pp. 862–869. https://doi.org/10.1007/s11663-013-9854-4

    Article  CAS  Google Scholar 

  10. Alekseev, D.I., Smirnov, A.N., and Chalyy, K.I., A mathematical model of relation and origin of variation between CRI and CSR indexes, Paliva, 2021, vol. 13, no. 3, pp. 70–85. https://doi.org/10.35933/paliva.2021.03.01

    Article  CAS  Google Scholar 

  11. Popova, A.N., Fedorova, N.I., and Ismagilov, Z.R., X-Ray structural analysis of vitrinites in coal at different metamorphic stages, Coke Chem., 2020, vol. 63, pp. 57–62.

  12. Sozinov, S.A., Popova, A.N., Fedorova, N.I., and Ismagilov, Z.R., Study of the morphology and structure of coal vitrinites, Chem. Sustainable Dev., 2022, vol. 30, no. 6, pp. 686–692. https://doi.org/10.15372/CSD2022432

    Article  Google Scholar 

  13. Alekseev, D.I., Smirnov, A.N., and Gorlenko, D.A., Variation of the size of molecular oriented coke domains after gasification, Chem. Sustainable Dev., 2022, vol. 30, no. 5, pp. 435–440. https://doi.org/10.15372/CSD2022401

    Article  Google Scholar 

  14. Lu, L., Sahajwalla, V., Kong, C., and Harris, D., Quantitative X-ray diffraction analysis and its application to various coals, Carbon, 2001, vol. 39, no. 12, pp. 1821–1833. https://doi.org/10.1016/S0008-6223(00)00318-3

    Article  CAS  Google Scholar 

  15. Takagi, H., Maruyama, K., and Yoshizawa, N., XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 2004, vol. 83, no. 17, pp. 2427–2433. https://doi.org/10.1016/j.fuel.2004.06.019

    Article  CAS  Google Scholar 

  16. Smędowski, Ł., Krzesińska, M., Kwasny, W., and Kozanecki, M., Development of ordered structures in the hightemperature (HT) cokes from binary and ternary coal blends studied by means of X-ray diff raction and Raman spectroscopy, Energy Fuels, 2011, vol. 25, no. 7, pp. 3142–3149. https://doi.org/10.1021/ef200609t

    Article  CAS  Google Scholar 

  17. Ferrary, A.C., Raman spectroscopy of graphene and graphite. Disorder, electron-phonon coupling, doping and nanodiabatic effects, Solids State Commun., 2007, vol. 143, pp. 47–57.

    Article  ADS  Google Scholar 

  18. Mongush, G.R., Chuldum, K.K., Nikitin, A.P., and Zhizhaev, A.M., Structure of carbon residue from the pyrolysis of Kaa-Khem coal in the presence of volatile products, Coke Chem., 2021, vol. 64, no. 5, pp. 206–213. https://doi.org/10.3103/S1068364X21050045

    Article  CAS  Google Scholar 

  19. Nikitin, A.P., Dudnikova, Yu.N., Mikhaylova, E.S., and Ismagilov, Z.R., Raman characteristics of Kuznetsk Basin coal and coal-based sorbents, Coke Chem., 2019, vol. 62, no. 9, pp. 379–384. https://doi.org/10.3103/S1068364X19090059

    Article  Google Scholar 

  20. Nikitin, A.P., Zykov, I.Yu., Kozlov, A.P., and Ismagilov, Z.R., Structure of carbon sorbents produced from coal, Coke Chem., 2018, vol. 61, no. 12, pp. 463–468. https://doi.org/10.3103/S1068364X18120062

    Article  Google Scholar 

  21. Rantitscha, G., Bhattacharyyaa, A., Günbatib, A., Schulten, M.-A., Schenk, J., Letofsky-Papst, I., and Albering, J., Microstructural evolution of metallurgical coke: Evidence from Raman spectroscopy, Int. J. Coal Geol., 2020, vol. 227, p. 103546. https://doi.org/10.1016/j.coal.2020.103546

    Article  CAS  Google Scholar 

  22. Nesbitt, K., Aziz, F., Mahoney, M., Chalup, S., and Lamichhane, B.P., Classifying coke using CT scans and landmark multidimensional scaling, Int. J. Coal Sci. Technol., 2023, vol. 10, no. 1, p. 7. https://doi.org/10.1007/s40789-023-00570-z

    Article  Google Scholar 

  23. Sakurovs, R., Koval, L., Grigore, M., Sokolova, A., de Campo, L., and Rehm, C., Nanostructure of cokes, Int. J. Coal Geol., 2018, vol. 188, pp. 112–120. https://doi.org/10.1016/j.coal.2018.02.006

    Article  CAS  Google Scholar 

  24. Sakurovs, R., Grigore, M., Sokolova, A., and Mata, J., Effect of high temperature on nanopores in cokes, Fuel, 2023, vol. 334, part 2, p. 126821. https://doi.org/10.1016/j.fuel.2022.126821

    Article  CAS  Google Scholar 

  25. Lomas, H., Roest, R., Sakurovs, R., Wu, H., Jiang, Z., Rish, S.K., Brooks, B., Hill, T., Anderson, A., Edwards, A., Mahoney, M.R., and Tahmasebi, A., Influence of elevated temperature and gas atmosphere on coke abrasion resistance. Part one: Pilot oven cokes, Fuel, 2024, vol. 356, p. 129517. https://doi.org/10.1016/j.fuel.2023.129517

    Article  CAS  Google Scholar 

  26. Stepanov, Yu.V., Popova, N.K., and Koshkarov, D.A., Discussion of the paper “The Nippon Steel Corporation method of determining the strength of coke after gasification and the coke reactivity index,” Coke Chem., 2005, vol. 5, p. 21.

    Google Scholar 

  27. Stepanov, E.N., Mezin, D.A., Chuikina, O.V., and Shebunova, L.V., Methods of determining coke quality, Coke Chem., 2011, vol. 54, no. 12, pp. 450–452. https://doi.org/10.3103/S1068364X11120131

    Article  Google Scholar 

  28. Koval, L. and Sakurovs, R., Variability of metallurgical coke reactivity under the NSC test conditions, Fuel, 2019, vol. 241, pp. 519–521. https://doi.org/10.1016/j.fuel.2018.12.053

    Article  CAS  Google Scholar 

  29. Kumar, D., Saxena, V.K., Tiwari, H.P., Nandi, B.K., Verma, A., and Tiwary, V.K., Variability in metallurgical coke reactivity index (CRI) and coke strength after reaction (CSR): An experimental study, ACS Omega, 2022, vol. 7, no. 2, pp. 1703–1711. https://doi.org/10.1021/acsomega.1c04270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nyathi, M.S., Kruse, R., Mastalerz, M., and Bish, D.L., Nature and origin of coke quality variation in heat-recovery coke making technology, Fuel, 2016, vol. 176, pp. 11–19. https://doi.org/10.1016/j.fuel.2016.02.050

    Article  CAS  Google Scholar 

  31. Nyathi, M.S., Kruse, R., Mastalerz, M., and Bish, D.L., Investigation of coke quality variation between heat-recovery and byproduct cokemaking technology, Energy Fuels, 2017, vol. 27, no. 2, pp. 7876–7884. https://doi.org/10.1021/acs.energyfuels.6b02817

    Article  CAS  Google Scholar 

  32. Pearson, D.E., Influence of Geology on CSR (Coke Strength After Reaction with CO2), 2009. https://www.coalpetrography.com/library/pdf/GeologyCSR.pdf. Cited October 13, 2023.

  33. Alekseev, D.I., Zhidkov, M.Yu., and Smirnov, A.N., Mechanical strength of coke in dependence on its position in the coking chamber and parameters of the formed domain structure, Probl. Chern. Metall. Materialoved., 2023, no. 1, pp. 14–21. https://doi.org/10.54826/19979258_2023_1_14

Download references

Funding

Financial support for this research was provided by the Russian Science Foundation (grant 22-79-00073, https://rscf.ru/project/22-79-00073/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. I. Alekseev, S. A. Krylova, D. A. Gorlenko, M. Yu. Zhidkov, A. M. Gelivanov, R. I. Islamgulov or T. A. Shaykhislamova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, D.I., Krylova, S.A., Gorlenko, D.A. et al. Dimensional Changes of Molecularly Oriented Domains in Coke. Coke Chem. 66, 555–563 (2023). https://doi.org/10.3103/S1068364X23600148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23600148

Navigation