Skip to main content
Log in

Influence of Moisture on the Preparation and Coking of Coal Batch

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The maximum moisture content is found to depend on the nature of the coal and its metamorphic stage, characterized by the volatile matter, the vitrinite reflection coefficient, the carbon and hydrogen content, and the calorific value. On moving to smaller size classes, the maximum moisture content increases on account of the increase in specific surface. The maximum moisture content is practically independent of the coal’s degree of oxidation and the chemical composition of the ash. The packing density is a maximum for dry coal and falls to a minimum at a moisture content of 6–10% (depending on the size class). The oxidation of coal is accompanied by increase in the total and analytical moisture content as a result of physical and chemical sorption at the surface of the coal particles. Increase in moisture content increases the coal’s resistance to crushing, which results in nonuniform particle size and impaired coal mobility. The consequences of increased moisture content are increase in the heat required in coking; coke of poorer quality (less uniform piece size, lower mechanical strength, and increased porosity); and shorter working life of the coke ovens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Avgushevich, I.V., Sidoruk, E.I., and Bronovets, T.M., Standartnye metody ispytaniya uglei. Klassifikatsiya uglei (Standard Methods for Coal Testing. Coal Classification), Moscow: Reklama Master, 2018.

  2. Balaeva, Ya.S., Miroshnichenko, D.V., and Kaftan, Yu.S., Predicting the classification characteristics of coal. Part 2. Maximum moisture content, Coke Chem., 2015, vol. 58, no. 12, pp. 459–464.

    Article  Google Scholar 

  3. Miroshnichenko, D.V., Kaftan, Yu.S., Desna, N.A., and Sytnik, A.V., Oxidation of bituminous coal. 1. Expansion pressure, Coke Chem., 2015, vol. 58, no. 10, pp. 376–381.

    Article  Google Scholar 

  4. DSTU (Ukrainian State Standard) 7611:2014. Coals. Analysis of Oxidation and Degree of Oxidation, Kyiv: Ukr. Nauchno-Issled. Uch. Tsentr Probl. Stand., Sertif. Kach., 2016.

  5. GOST (State Standard) 8858-93 (ISO 1018-75): Brown Coals, hard Coals and Anthracite. Methods for Determination of Moisture Holding Capacity, Moscow: Izd. Standartov, 1995.

    Google Scholar 

  6. Kormer, M.V., Shmeltser, E.O., Lyalyuk, V.P., et al., Dependence of coal’s freezing point on its granulometric composition, Coke Chem., 2015, vol. 58, no. 1, pp. 9–14.

    Article  Google Scholar 

  7. Kuznichenko, V.M. and Balaeva, Ya.S., Maximum moisture capacity of coals of different size classes, Uglekhim. Zh., 2019, no. 6, pp. 8–13.

  8. Balaeva, Ya.S., Miroshnichenko, D.V., Kaftan, Yu.S., and Shmalko, V.M., Relation between the maximum moisture content of coal and its porous structure, Coke Chem., 2016, vol. 59, no. 11, pp. 407–410.

    Article  Google Scholar 

  9. Miroshnichenko, D.V., Balaeva, Ya.S., and Kaftan, Yu.S., Vzaemozv’yazok vlastivostei neokisnenogo vugillya z naivishchoyu teplotoyu zgoryannya ta maksimalʹnoyu vologoemnistyu (Relationship of the Properties of Non-Oxidized Coal with High Calorific Value and Maximum Moisture Capacity), Kharkov: Nats. Tekh. Univ. KhPI, 2019.

  10. Miroshnichenko, D.V., Rozvitok teorii i praktiki vikoristannya okisnenogo vugillya dlya virobnitstva domennogo koksu (Theory and Practice of Use of Oxidized Coal for the Production of Blast-Furnace Coke), Kharkov: Nats. Tekh. Univ. KhPI, 2019.

  11. Uchitel’, A.D., Kormer, M.V., Lyalyuk, V.P., et al., Transportation of coal concentrates at negative ambient temperatures, Coke Chem., 2013, vol. 56, no. 5, pp. 167–172.

    Article  Google Scholar 

  12. Zhuravlev, N.P. and Malikov, O.B., Transportnogruzovye sistemy. Uchebnik dlya vuzov (Transport Cargo Systems: Manual for Hiher Education Institutions), Moscow: Uch. Metod. Nauchn. Tsentr, 2005.

  13. Kormer, M.V., Shmeltser, E.O., Lyalyuk, V.P., et al., Dependence of coal’s freezing point on its granulometric composition, Coke Chem., 2015, vol. 58, no. 1, pp. 9–14.

    Article  Google Scholar 

  14. DSTU (Ukrainian State Standard) 7724:2015: Coal for Coking. Technical Specification, Kyiv: Ukr. Nauchno-Issled. Uch. Tsentr Probl. Stand., Sertif. Kach., 2016.

  15. Das, S.K., Nandy, A.S., Paul, A., et al., Coal blend moisture—a boon or bane in cokemaking? Coke Chem., 2013, vol. 56, no. 4, pp. 126–136.

    Article  Google Scholar 

  16. DSTU (Ukrainian State Standard) 3472:2015: Coal, Lignite, and Anthracite. Classification, Kyiv: Ukr. Nauchno-Issled. Uch. Tsentr Probl. Stand., Sertif. Kach., 2015.

  17. Bao, J., Xue, G., and Chang, H., Influence of coal charge moisture on coke-making process and coke quality, Fuel Chem. Process., 2010, vol. 41, no. 3, pp. 11–13.

    Google Scholar 

  18. Cui, P., Qu, Kl., Ling, Q., et al., Effects of coal moisture control and coal briquette technology on structure and reactivity of cokes, Coke Chem., 2015, vol. 58, no. 4, pp. 162–169.

    Article  Google Scholar 

  19. Gordienko, A.I., Redin, V.A., Dolgarev, G.V., et alThe development and operation of a pilot installation for the thermal preparation of charge at the Yasinovskiy Coke and Chemical Plant, Uglekhim. Zh., 2008, nos. 5–6, p. 15.

  20. Grishchenko, S.G., Gordienko, A.I., Saranchuk, V.I., et al., Production and testing of highly reactive non-blast-furnace coke from thermally prepared charges on standard batteries with horizontal furnaces, Uglekhim. Zh., 2008, nos. 5–6, pp. 41–46.

  21. Gordiyenko, A.I., Redin, V.A., Dolgaryev, G.V., et al., Results of installation and exploitation of thermal coal charge pretreatment pilot plant at OJSC Yasinovsky Coke and Chemical Plant, Coke Chem., 2009, vol. 52, no. 2, pp. 70–76.

    Article  Google Scholar 

  22. Vasil’ev, Yu.S., Gordienko, A.I., and Dolgarev, G.V., Industrial experience with the thermal preparation of coal batch before coking, Coke Chem., 2008, vol. 51, no. 7, pp. 264–267.

    Article  Google Scholar 

  23. Chalenko, V.I., Bezhin, V.I., Darienko, V.E., and Shul’ga, I.V., Specific design of KB no. 4 (OJSC Yasinovsky Coke and Chemical Plant) for operation with wet and thermally prepared charge, Uglekhim. Zh., 2013, no. 6, pp. 43–49.

  24. Vasil’ev, Yu.S., Gordienko, A.I., Dolgarev, G.V., et al., The first industrial coke oven battery with a thermal charge preparation device in Ukraine to improve the resource and energy efficiency of the metallurgical industry, Uglekhim. Zh., 2010, nos. 3–4, pp. 48–52.

  25. Spravochnik koksokhimika. Tom 1. Ugli dlya koksovoaniya. Obogashchenie uglei. Podgotovka uglei k koksovaniyu (A Handbook of Coke Chemistry, Vol. 1: Coking Coal, Coal Enrichment, Coal Preparation for Coking), Borisov, L.N. and Shapoval, Yu.G., Eds., Kharkov: INZhEK, 2010.

  26. Elliott, M.A., Chemistry of Coal Utilization, New York: Wiley, 1981, vol. 2.

    Google Scholar 

  27. Tanaka, S., Okanishi, K., Kikuchi, A., and Yamamura, Y., Operation of dry-cleaned and agglomerated precompaction system (DAPS), Proc. Ironmaking Conf., Warrendale, PA: Iron Steel Soc., 1997, vol. 56, pp. 139–142.

  28. Miroshnichenko, D.V., Influence of oxidation on the packing density of coal, Coke Chem., 2014, vol. 57, no. 5, pp. 183–191.

    Article  Google Scholar 

  29. Miroshnichenko, D.V. and Desna, N.A., Modification of technical analysis for oxidized coal, Coke Chem., 2014, vol. 57, no. 9, pp. 345–350.

    Article  Google Scholar 

  30. Suarez-Ruiz, I. and Crelling, J.C., Mining and beneficiation, in Applied Coal Petrology: The Role of Petrology in Coal Utilization, Amsterdam: Elsevier, 2008, pp. 73–76.

    Google Scholar 

  31. Kaz’mina, V.V. and Nikitina, T.E., Teplovye protsessy koksovaniya (Thermal Processes of Coking), Moscow: Metallurgiya, 1987.

  32. Katayama, T., Kobayashi, T., Tanaka, T., et al., Operation of coal moisture control equipment of coke oven batteries at Chiba Works, Proc. 48th Ironmaking Conf., April 2–5, 1989, Chicago, 1989, pp. 14–22.

  33. Filatov, Yu.V., Il’yashov, M.A., Kolomiichenko, A.I., et al., The effect of reduction of humidity and ash content of the charge on the economic performance of coke production, Uglekhim. Zh., 2010, nos. 5–6, pp. 41–45.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Miroshnichenko or V. I. Meshchanin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, D.V., Meshchanin, V.I. Influence of Moisture on the Preparation and Coking of Coal Batch. Coke Chem. 64, 352–361 (2021). https://doi.org/10.3103/S1068364X21080056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X21080056

Keywords:

Navigation