Skip to main content
Log in

Interaction of Coal with Sodium Nitrite

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

A mechanism is proposed for the interaction of coal with paramagnetic nitrogen oxides produced in the decomposition of sodium nitrite. The main role in the self-oxidation of coal is played by quinoid structures with high redox potential. Four basic periods are identified in the thermooxidative transformation of coal. These periods differ in the rate of the processes, the quantity of gaseous oxidative products, and their composition. The decomposition products of the coal react most vigorously with the oxidant in the fourth period. That leads rapidly to self-heating of the reaction mixture, culminating in explosive gas liberation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Miroshnichenko, D.V., Kaftan, Yu.S., Desna, N.A., Nazarov, V.N., and Nikolaichuk, Yu.V., Ignition temperature of coal. 1. Influence of the coals composition, structure, and properties, Coke Chem., 2016, vol. 59, no. 8, pp. 277–282.

    Article  Google Scholar 

  2. Miroshnichenko, D.V., Kaftan, Yu.S., Desna, N.A., Nazarov, V.N., Senkevich, I.V., and Nikolaichuk, Yu.V., Influence of the composition, structure, and properties of the ignition temperature of coal, Petrol. Coal, 2017, vol. 59, no. 6, pp. 925–932.

    CAS  Google Scholar 

  3. Miroshnichenko, D.V., Shulga, I.V., Kaftan, Yu.S., and Desna, N.A., Ignition temperature of coal. 2. Binary coal mixtures, Coke Chem., 2017, vol. 60, no. 6, pp. 219–225.

    Article  Google Scholar 

  4. Miroshnichenko, D.V., Shulga, I.V., Kaftan, Yu.S., Desna, N.A., and Nikolaichuk, Yu.V., Ignition temperature of coal. 3. Multicomponent coal mixture, Coke Chem., 2017, vol. 60, no. 9, pp. 343–347.

    Article  Google Scholar 

  5. Miroshnichenko, D.V., Kaftan, Yu.S., Desna, N.A., Nazarov, V.N., Senkevich, I.V., and Nikolaichuk, Yu.V., Dependence of the ignition temperature of coals on their properties, Chem. Chem. Technol., 2018, vol. 12, no. 2, pp. 251–257.

    Article  CAS  Google Scholar 

  6. Miroshnichenko, D.V., Kramarenko, Yu.V., Shulga, I.V., Kaftan, Yu.S., Desna, N.A., and Nikolaichuk, Yu.V., Ignition temperature of coal. 4. Influence of heating rate and degree of oxidation, Coke Chem., 2018, vol. 61, no. 6, pp. 202–208.

    Article  Google Scholar 

  7. Miroshnichenko, D.V., Shulga, I.V., Kaftan, Yu.S., Desna, N.A., Nikolaichuk, Yu.V., and Kotlyarov, E.I., Ignition temperature of coal. 5. Practical using, Coke Chem., 2018, vol. 61, no. 8, pp. 281–286.

    Article  Google Scholar 

  8. Nesterenko, L.L., Biryukov, Yu.V., and Lebedev, V.A., Osnovy khimii i fiziki goryuchikh iskopaemykh (Fundamental Chemistry and Physics of Fossil Fuels), Kiev: Vishcha Shkola, 1987.

  9. Lipovich, V.G., Kalabin, G.A., and Kalechits, I.V., Khimiya i pererabotka uglya (Chemistry and Processing of Coal), Moscow: Khimiya, 1988.

  10. Veselovskii, V.S., Khimicheskaya priroda goryuchikh iskopaemykh (Chemical Nature of Combustible Fossils), Moscow: Akad. Nauk SSSR, 1955.

  11. Glushchenko, I.M., Teoreticheskie osnovy tekhnologii goryuchikh iskopaemykh (Theory of Technology of Combustible Fossils), Moscow: Metallurgiya, 1990.

  12. Biryukov, Yu.V., Termicheskaya destruktsiya spekayushchikhsya uglei (Thermal Destruction of Sintering Coal), Moscow: Metallurgiya, 1980.

  13. Kucher, R.V., Kompanets, V.A., and Butuzova, L.F., Struktura iskopaemykh uglei i ikh sposobnost’ k okisleniyu (Structure of Fossil Coal and Their Oxidation), Kiev: Naukova Dumka, 1980.

  14. Tronov, B.V., The mechanism of air oxidation of coal, Izv. Tomsk. Ind. Inst., 1940, vol. 60, no. 3, pp. 11–36.

    CAS  Google Scholar 

  15. Saranchuk, V.I., Ruschev, D., and Semenenko, V.K., Okislenie i samovozgoranie tverdogo topliva (Oxidation and Self-Ignition of Solid Fuel), Kyiv: Naukova Dumka, 1994.

  16. Tronov, B.V., Phenolic theory of coal oxidation, Zh. Prikl. Khim., 1940, vol. 13, no. 7, pp. 18–24.

    Google Scholar 

  17. Davies, D.I. and Parrott, M.J., Free Radicals in Organic Synthesis, Berlin: Springer-Verlag, 1978.

    Book  Google Scholar 

  18. Pryor, W.A., Free Radicals, New York: McGraw-Hill, 1966.

    Google Scholar 

  19. Roberts, J.D. and Caserio, M.C., Basic Principles of Organic Chemistry, New York: Benjamin, 1964.

    Google Scholar 

  20. Laird, T., Quinones, in Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds, Vol. 1: Stereochemistry, Hydrocarbons, Halo Compounds, Oxygen Compounds, Barton, D.H.R. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, ch. 5.5.

  21. Carey, F.A. and Sundberg, R.J., Advanced Organic Chemistry, Part A: Structure and Mechanisms, New York: Springer-Verlag, 1976.

  22. Sklyar, M.G., Fiziko-khimicheskie osnovy spekaniya uglei (Physical-Chemical Basis of Coal Sintering), Moscow: Metallurgiya, 1984.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Miroshnichenko or V. N. Nazarov.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, D.V., Nazarov, V.N. Interaction of Coal with Sodium Nitrite. Coke Chem. 62, 83–88 (2019). https://doi.org/10.3103/S1068364X19030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X19030049

Keywords:

Navigation