Advertisement

Coke and Chemistry

, Volume 60, Issue 12, pp 476–484 | Cite as

Products of Coal Pyrolysis

  • A. A. Osokina
  • N. V. Zhuravleva
  • R. R. Potokina
  • Z. R. Ismagilov
  • P. P. Lazarevskiy
  • Yu. E. Romanenko
  • O. L. Tsiple
Chemistry
  • 21 Downloads

Abstract

Solid, liquid, and gaseous products of the pyrolytic decomposition of coal are studied. Analysis of the gas composition shows that most gas is formed at 600–900°C. The calorific value of the gas is greatest at 500°C, on account of the high concentration of methane and heavy hydrocarbons. The results for the liquid products show that, with increase in temperature, the yield of phenols decreases, while the concentration of polycyclic aromatic hydrocarbons increases.

Keywords

pyrolytic decomposition pyrolytic gas byproducts polycyclic aromatic hydrocarbons phenols liquid chromatography gas–liquid chromatography gas-adsorption chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tashpolotov, Y., Development of technology for coal coking from the Uzgen basin. http://econf.rae.ru/article/4724.Google Scholar
  2. 2.
    Aldasheva, N.T., Ysmanov, E.M., and Tashpolotov, Y., Analysis of kinetics of low-temperature pyrolysis of lignite from Alai and Uzgen fields to obtain the coke oven gas and tar, Nauka, Nov. Tekhnol. Innovatsii, 2017, no. 4, pp. 66–68.Google Scholar
  3. 3.
    Nedelko, V.V., Kursunsky, B.L., Chukanov, N.V., Larikova, T.S., and Samoilenko, N.S., Kinetic regularities and products of pyrolysis of hard and brown coals, Solid Fuel Chem., 2003, vol. 37, no. 1, pp. 52–61.Google Scholar
  4. 4.
    Kozhevnikova, Yu.A., Chizhikov, A.G., Chirkov, V.G., et al., Production of boiler fuels from lignite by pyrolysis, Energ. Avtom., 2015, no. 4 (26), pp. 128–134.Google Scholar
  5. 5.
    Nurullina, E.N., Shulaev, M.V., Yakubov, M.R., et al., Production of activated coal from coal raw materials and the possibile use of side products, Vestn. Kazan. Tekhnol. Univ., 2012, vol. 15, no. 12, pp. 237–240.Google Scholar
  6. 6.
    Kovalev, S.G., Nikolaeva, S.V., Khabibullin, R.R., et al., Resources and non-traditional use of lignite from the South Ural Basin, Bashk. Khim. Zh., 2008, vol. 15, no. 3, pp. 148–150.Google Scholar
  7. 7.
    Nikolaeva, S.V., Latypova, F.N., and Shavshukova, S.Yu., Modern processes of coal conversion, Bashk. Khim. Zh., 2009, vol. 16, no. 3, pp. 122–132.Google Scholar
  8. 8.
    Zhuravleva, N.V., Potokina, R.R., Ismagilov, Z.R., and Khabibulina, E.R., Pollution of snow cover with polycyclic aromatic hydrocarbons and toxic elements in Novokuznetsk, Khim. Interesakh Ustoich. Razvit., 2014, vol. 22, no. 5, pp. 445–454.Google Scholar
  9. 9.
    Zhuravleva, N.V., Potokina, R.R., Ismagilov, Z.R., and Khabibulina, E.R., Determination of polycyclic aromatic hydrocarbons in coal by high-performance liquid chromatography, Khim. Interesakh Ustoich. Razvit., 2015, vol. 23, no. 2, pp. 117–123.Google Scholar
  10. 10.
    Zhuravleva, N.V., Khabibulina, E.R., Ismagilov, Z.R., et al., The relationship between the structure of fossil coals and the content of polycyclic aromatic hydrocarbons in them, Naukoemkie Tekhnol. Razrab. Ispol’z., 2016, vol. 24, no. 3, pp. 355–361.Google Scholar
  11. 11.
    PND F 16.1:2.2:2.3:3.62-09: Metodika vypolneniya izmerenii massovykh dolei politsiklicheskikh aromaticheskikh uglevodorodov v pochvakh, donnykh otlozheniyakh, osadkakh stochnykh vod i otkhodakh proizvodstva i potrebleniya metodom vysokoeffektivnoi zhidkostnoi khromatografii (PND F 16.1:2.2:2.3:3.62-09: Mesurement of Mass Fractions of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Wastewater Sediments and Wastes of Industry and Households by High-Performance Liquid Chromatography), Moscow: Fed. Sluzhba Ekol., Tekhnol. At. Nadzoru, 2009.Google Scholar
  12. 12.
    PND F 14.1:2:4.70-96: Kolichestvennyi khimicheskii analiz vod. Metodika izmerenii massovykh kontsentratsii politsiklicheskikh aromaticheskikh uglevodorodov v pit’evykh, prirodnykh i stochnykh vodakh metodom vysokoeffektivnoi zhidkostnoi khromatografii (PND F 14.1:2:4.70-96: Quantitative Chemical Water Analysis. Measurement of Mass Concentrations of Polycyclic Aromatic Hydrocarbons in Drinking, Natural, and Waste Water by High-Performance Liquid Chromatography), Moscow: Fed. Sluzhba Nadzoru Sfere Prirodopol’z., 2012.Google Scholar
  13. 13.
    NDP 30.5.127-2014: Metodika opredeleniya fenolov i khlorfenolov v pochvakh, donnykh otlozheniyakh, osadkakh stochnykh vod i otkhodakh proizvodstva i potrebleniya (NDP 30.5.127-2014: Analysis of Phenols and Chlorophenols in Soils, Bottom Sediments, Sediments of Waste Waters and Wastes of Industry and Households), Moscow: Rosa, 2014.Google Scholar
  14. 14.
    GOST (State Standard) 31371.7-2008: Natural Gas. Determination of Composition with Defined Uncertainty by Gas Chromatography Method. Part 7: Measurement Procedure of the Mole Fraction of Components, Moscow: Standartinform, 2009.Google Scholar
  15. 15.
    Zhuravleva, N.V., Potokina, R.R., and Ismagilov, Z.R., The physicochemical parameters of natural combustible gases from coal beds, Vestn. Kuzbasskogo Gos. Tekh. Univ., 2013, no. 5, pp. 48–53.Google Scholar
  16. 16.
    Potokina, R.R., Zhuravleva, N.V., and Ismagilov, Z.R., The component composition of the gas extracted from the coal core, Vestn. Kuzbasskogo Gos. Tekh. Univ., 2013, no. 5, pp. 80–83.Google Scholar
  17. 17.
    Zhuravleva, N.V., Potokina, R.R., Ismagilov, Z.R., and Kudinov, E.V., Composition of gas from the coal beds of the Taldinskoe deposit, Solid Fuel Chem., 2015, vol. 49, no. 2, pp. 59–65.CrossRefGoogle Scholar
  18. 18.
    GOST (State Standard) 33007-2014: Scrubber and Duster Equipment. Methods for Determination of Dust Load of Gas Streams. General Technical Requirements and Control Methods, Moscow: Standartinform, 2015.Google Scholar
  19. 19.
    FR 1.31.2001.00384: Metodika izmereniya massovoi kontsentratsii sazhi v promyshlennykh vybrosakh i v vozdukhe rabochei zony (FR 1.31.2001.00384: Measurement of Mass Fraction of Soot in Industrial Emissions and in the Air of Working Area), Yaroslavl: Tekhuglerod, 2005.Google Scholar
  20. 20.
    ISO 11338-2:2003: Stationary Source Emissions— Determination of Gas and Particle-Phase Polycyclic Aromatic Hydrocarbons—Part 2: Sample Preparation, Clean-Up and Determination (IDT), Moscow: Standartinform, 2009.Google Scholar
  21. 21.
    FR 1.31.2004.01259: Metodika vypoleneniya izmerenii massovoi kontsentratsii orgnicheskikh veshchestv (27 soedinenii) v promyshlennykh vybrosakh i vozdukhe rabochei zony gazokhromatograficheskim metodom s izpol’zovaniem universal’nogo mnogorazovogo probootbornika AYuV 0.005.169MVI (FR 1.31.2004.01259: Measurement of Mass Concentration of Organic Substances (27 Compounds) in Industrial Emissions and the Air of Working Area by Gas Chromatography Using the Universal Reusable Sampler AYuV 0.005.169 MVI), St. Petersburg: Monitoring, 2004.Google Scholar
  22. 22.
    Gazoanalizator DAG-510. Rukovodstvo po ekspluatatsii LPAR 413411.011 RE (Gas Analyzer DAG-510. User Guide LPAR 413411.011 RE), Nizhny Novgorod: Ditgaz, 2004.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Osokina
    • 1
  • N. V. Zhuravleva
    • 1
  • R. R. Potokina
    • 1
  • Z. R. Ismagilov
    • 2
  • P. P. Lazarevskiy
    • 3
  • Yu. E. Romanenko
    • 3
  • O. L. Tsiple
    • 3
  1. 1.AO Zapadno-Sibirskii Ispytatel’nyi TsentrNovokuznetskRussia
  2. 2.Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.OOO RegionstroiNovokuznetskRussia

Personalised recommendations