Skip to main content
Log in

Relations between the reflection coefficients of the basic groups of macerals: A review

  • Coal
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Quantitative relations are found between the structural and chemical characteristics of macerals of the basic coal groups (vitrinite Vt, inertinite I, liptinite L), on the one hand, and their reflection coefficients R r and the corresponding dispersions σ R , on the other. For coal of a particular metamorphic stage, the reflection coefficient declines in the series I > Vt > L, on account of the reduction in aromatic chemical structure and in the degree of condensation of the aromatic blocks. In the metamorphic series, the reflection coefficients of the macerals rise; the values for Vt and L at intermediate stages converge. The dispersion of the reflection coefficients (and hence the reflectograms) is due to the spread in characteristics of the chemical structure of the coal’s organic content, as confirmed by calculations for the vitrinite of D, G, Zh, and K coal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artem’ev, V.B., Eremin, I.V., and Gagarin, S.G., Petrografiya uglei i ikh effektivnoe ispol’zovanie (Petrography of Coal and Its Effective Application), Moscow: Nedra Communications, 2000.

    Google Scholar 

  2. Taylor, G.H., Teichmuller, M., Davis, C., et al., Organic Petrology, Berlin: Gebruder Borntraeger, 1998.

    Google Scholar 

  3. Rus’lyanova, N.D., Uglekhimiya (Coal Chemistry), Moscow: Nauka, 2000.

    Google Scholar 

  4. Eremin, I.V. and Gagarin, S.G., Reflective Index of Vitrinite as a Measure of the Metamorphic Development of Coal, Khim. Tverd. Topl., 1999, no. 3, pp. 4–18.

  5. Gagarin, S.G., Calculation of the Refractive Index of Coke Byproducts, Koks Khim., 2004, no. 11, pp. 28–34.

  6. Atkins, P., Quanta: A Handbook of Concepts, Oxford: Clarendon Press, 1974.

    Google Scholar 

  7. Gagarin, S.G. and Eremin, I.V., Evaluating the Reflective Properties of Coal Macerals from Structural and Chemical Data, Koks Khim., 1996, no. 8, pp. 11–18.

  8. Artem’ev, V.B., Eremin, I.V., Lisurenko, A.V., and Gagarin, S.G., Usloviya obrazovaniya i kharakternye priznaki dinamicheski aktivnykh uglei (Conditions of Formation and Characteristic Features of the Dynamic Activity of Coal), Moscow: Nedra Communications, 1999.

    Google Scholar 

  9. Gagarin, S.G., Additive Calculation of the Polarizability of Polycyclic Aromatic Hydrocarbons, Zh. Fiz. Khim., 1996, vol. 70, no. 5, pp. 854–858.

    CAS  Google Scholar 

  10. Gyul’maliev, A.M. and Gagarin, S.G., Simulation of the Density of Coal Macerals in Terms of the Carbon and Hydrogen Content, Khim. Tverd. Topl., 2002, no. 4, pp. 20–32.

  11. Golovin, G.S., Gyul’maliev, A.M., Gagarin, S.G., and Skopenko, S.M., Structure and Properties of the Organic Component of Coal in the Metamorphic Series, Ross. Khim. Zh., 1994, vol. 38, no. 5, pp. 20–26.

    Google Scholar 

  12. Gagarin, S.G., Gyul’maliev, A.M., and Golovin, G.S., Calculation of the Properties of Coal in the Metamorphic Series on the Basis of a Structural and Chemical Model of the Organic Mass, Khim. Tverd. Topl., 1995, no. 3, pp. 18–27.

  13. Gagarin, S.G., Forms of Oxygen in the Organic Component of Coal: A Review, Koks Khim., 2001, no. 10, pp. 16–23.

  14. Gagarin, S.G., Forms of Sulfur and Nitrogen in the Organic Component of Coal: A Review, Koks Khim., 2003, no. 7, pp. 31–39.

  15. Van Krevelen, D.W., Coal Typology: Chemistry, Physics, Constitution, Arnheim: Elsevier, 1993.

    Google Scholar 

  16. Gagarin, S.G., Regression Analysis of the Composition and Properties of Macerals of Perhydrous and Subhydrous Kuznetsk Coal, Koks Khim., 1998, no. 2, pp. 2–6.

  17. Zhdanov, V.S., Rus’yanova, N.D., Mukhametzyanova, E.E., and Belyavskaya, L.V., Structural Characteristics of Coal from Different Basins, Koks Khim., 1992, no. 9, pp. 5–8.

  18. Bronshtein, A.P., Beketova, L.A., and Suprunenko, O.I., Influence of the Reduction Properties and Density of Vitrinites in the Metamorphic Series on the Yield of Thermal- Destruction Products, Koks Khim., 1988, no. 8, pp. 8–12.

  19. Sklyar, M.G., Soldatenko, E.M., and Valters, N.A., Molecular and Supermolecular Structure of Coal, Struktura i svoistva uglei v ryadu metamorfizma (Structure and Properties of Coal in the Metamorphic Series), Kiev: Naukova Dumka, 1985, pp. 3–16.

    Google Scholar 

  20. Dyrkacz, G.R., Bloomquist, C.A.A., Ruscic, L., and Crelling, J.C., Energy Fuels, 1991, vol. 5, no. 1, pp. 155–163.

    Article  CAS  Google Scholar 

  21. Gagarin, S.G., Golovin, G.S., and Gyul’maliev, A.M., Composition and Reactivity of Coal Fractions of Different Density, Khim. Tverd. Topl., 2006, no. 1, pp. 12–39.

  22. Gagarin, S.G., Calculation of the Elementary Composition from the Petrographic Characteristics, Khim. Tverd. Topl., 1997, no. 5, pp. 3–13.

  23. Timofeev, P.P., Evolyutsiya uglenosnykh formatsii v istorii Zemli (Evolution of Coal-Bearing Formations during Earth’s History), Moscow: Nauka, 2006.

    Google Scholar 

  24. The New Vitrinite Classification (ICCP System 1994), Fuel, 1998, vol. 77, no. 5, pp. 349–358.

  25. Kalmykov, G.S., Vitrinite, Its Reflective Properties, and Corresponding Methods of Determination, Petrologiya uglei i paragenez goryuchikh iskopaemykh (Coal Petrology and Paragenesis of Mineral Fuels), Moscow: Nauka, 1967, pp. 81–126.

    Google Scholar 

  26. Reshetko, A.N., Permitina, K.S., and Zhuravleva, D.D., Reflective Properties of Vitrinite as a Characteristic of the Metamorphic Stage of Coal, Nauch. osnovy proizvodstva koksa (Scientific Principles of Coke Production), Moscow: Metallurgiya, 1967, pp. 54–60.

    Google Scholar 

  27. Reshetko, A.N. and Zhuravleva, D.D., Influence of Vitrinite Components on Its Mean Reflective Properties, Podgotovka i koksovanie uglei (Preparation and Coking of Coal), Sverdlovsk: VUKhIN, 1967, pp. 88–93.

    Google Scholar 

  28. Gyul’maliev, A.M. and Gagarin, S.G., Reductive Properties in the Structure and Chemical Classification of Coal, Khim. Tverd. Topl., 2007, no. 2, pp. 20–26.

  29. Bensley, D.F. and Crelling, E.C., Fuel, 1994, vol. 73, no. 8, pp. 1306–1316.

    Article  CAS  Google Scholar 

  30. Wilkins, R.W.T., Diessel, C.F.K., and Buckingham, C.P., Intern. J. Coal Geol., 2002, vol. 52, no. 1, pp. 45–62.

    Article  CAS  Google Scholar 

  31. Veld, H., Wilkins, R.W.T., Xianming, X., and Buckingham, C.P., Organ. Geochem., 1997, vol. 26, no. 3–4, pp. 247–255.

    Article  CAS  Google Scholar 

  32. Kalkreuth, W., Sherwood, N., Cioccari, G., et al., Intern. J. Coal. Geol., 2004, vol. 57, no. 3–4, pp. 167–185.

    Article  CAS  Google Scholar 

  33. Lo, H.B., Wilkins, R.W.T., Ellacott, M.V., and Buckingham, C.P., Intern. J. Coal. Geol., 1997, vol. 33, no. 1, pp. 61–71.

    Article  CAS  Google Scholar 

  34. Sýkorová, I., Pickel, W., Christanis, K., et al., Intern. J. Coal. Geol., 2005, vol. 62, no. 1–2, pp. 85–106.

    Article  Google Scholar 

  35. Gavrilin, K.V. and Ozerskii, A.Yu., Kansko-Achinskii ugol’nyi bassein (Kansko-Achinsk Coal Basin), Moscow: Nedra, 1996.

    Google Scholar 

  36. Gagarin, S.G., Shulyakovskaya, L.V., Artemova, N.I., and Zimina, E.S., Reactivity of Lignite Macerals from Kansko-Achinsk Basin in Hydrogenation: Berezovsk Coal, Khim. Tverd. Topl., 1992, no. 5, pp. 40–51.

  37. Gagarin, S.G., Shulyakovskaya, L.V., Artemova, N.I., and Lesnikova, E.B., Quantitative Reactivity Characteristics of Lignite Macerals from Kansko-Achinsk Basin in Hydrogenation: Abansk Coal, Khim. Tverd. Topl., 1993, no. 4, pp. 56–67.

  38. Amijaya, H. and Littke, R., Intern. J. Coal. Geol., 2005, vol. 61, no. 3–4, pp. 197–221.

    Article  CAS  Google Scholar 

  39. Mastalerz, M. and Bustin, R.M., Organ. Geochem., 1994, vol. 22, no. 6, pp. 921–933.

    Article  CAS  Google Scholar 

  40. Mastalerz, M., Bustin, R.M., and Lamberson, M.N., Intern. J. Coal. Geol., 1993, vol. 22, no. 2, pp. 149–162.

    Article  CAS  Google Scholar 

  41. Mikhailov, N.A. and Voitishek, A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo (Numerical Modeling: Monte Carlo Methods), Moscow: Academia, 2006.

    Google Scholar 

  42. Shchadov, M.I., Artem’ev, V.B., Shadov, V.M., et al., Prirodnyi potentsial iskopaemykh uglei. Rational’noe ispol’zovanie ikh organicheskogo veshchestva (Natural Potential of Coal: Rational Use of Organic Components), Moscow: Nedra Communications, 2000, part 1.

    Google Scholar 

  43. Buslenko, N.P., Golenko, D.I., Sobol, I.M., et al., Metod statisticheskikh ispytanii (metod Monte-Karlo), (Statistical Test Methods: Monte Carlo Method), Moscow: Fizmatgiz,, 1962.

    Google Scholar 

  44. Komorek, J. and Morga, R., Intern. J. Coal Geol., 2003, vol. 71, no. 4, pp. 389–404.

    Article  Google Scholar 

  45. Gagarin, S.G. and Bronovets, T.M., Ranking of Coal Mixtures, Koks Khim., 2003, no. 12, pp. 4–10.

  46. Kiselev, B.P., Stukov, M.I., Ol’shanetskii, L.G., et al., Predicting Coke Strength and Calculating Coal-Batch Composition, Koks Khim., 1990, no. 3, pp. 34–37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Gagarin.

Additional information

Original Russian Text © S.G. Gagarin, 2008, published in Koks i Khimiya, 2008, No. 11, pp. 2–14.

About this article

Cite this article

Gagarin, S.G. Relations between the reflection coefficients of the basic groups of macerals: A review. Coke Chem. 51, 419–430 (2008). https://doi.org/10.3103/S1068364X0811001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X0811001X

Keywords

Navigation