Advertisement

Mean covariogram of cylinders and applications to Boolean random sets

  • F. Willot
Stochastic and Integral Geometry
  • 16 Downloads

Abstract

This work focuses on the variance properties of isotropic Boolean random sets containing randomly-oriented cylinders with circular cross-section. Emphasis is put on cylinders with large aspect ratios, of the oblate and prolate types. A link is established between the power law decay of the covariance function and the variance of the estimates of the volume fraction of cylinders. The covariance and integral range of the Boolean mixtures are expressed in terms of the orientation-averaged covariogram of cylinders, for which exact analytical formulas and approximate expressions are provided.

Keywords

Stochastic geometry geometrical covariogram Boolean model cylinder 

MSC2010 numbers

60D05 52A22 53C65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Altendorf, D. Jeulin, and F. Willot, “Influence of the fiber geometry on the macroscopic elastic and thermal properties”, Int. J. Sol. Struct, 51, 3807–3822, 2014.CrossRefGoogle Scholar
  2. 2.
    S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications (Wiley, Chichester, 2013).CrossRefzbMATHGoogle Scholar
  3. 3.
    J. Dirrenberger, S. Forest, D. Jeulin, “Towards gigantic RVE sizes for 3D stochastic fibrous networks”, Int. J. Sol. Struct., 51, 359–376, 2014.CrossRefGoogle Scholar
  4. 4.
    E. Couka, F. Willot, and D. Jeulin, “A mixed Boolean and deposit model for the modeling of metal pigments in paint layers”, Im. An. Ster., 34, 125–134, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    X. Emery, and C. Lantuéjoul, “Geometric covariograms, indicator variograms and boundaries of planar closed sets”, Math. Geosc., 43, 905–927, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    W. Gille, “The intercept length distribution density of a cylinder of revolution”, Experimentelle Technik der Physik 35, 93–98, 1987.Google Scholar
  7. 7.
    W. Gille, “The chord length distributions of selected infinitely long geometric figures–connections to the field of small-angle scattering”, Comp. Mat. Sci., 22, 318–332, 2001.CrossRefGoogle Scholar
  8. 8.
    W. Gille, Particle and Particle Systems Characterization (CRC Press, Boca Raton, 2014).zbMATHGoogle Scholar
  9. 9.
    H. S. Harutyunyan, and V. K. Ohanyan, “Covariogram of a cylinder”, J. Contemp. Math. Anal., 49(6), 366–375, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Jeulin, “Power laws variance scaling of Boolean random varieties”, Method. Comput. Appl. Prob., 18, 1065–1079, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D. Jeulin, P. Monnaie, and F. Péronnet, “Gypsummorphological analysis andmodeling”, Cem. Conc. Comp., 23, 299–311, 2001.CrossRefGoogle Scholar
  12. 12.
    C. Lantuéjoul, “Ergodicity and integral range”, J. Microscopy, 161, 387–403, 1991.CrossRefGoogle Scholar
  13. 13.
    G. Matheron, Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature (Masson, Paris, 1965).Google Scholar
  14. 14.
    G. Matheron, Éléments pour une théorie des milieux poreux (Masson, Paris, 1967).Google Scholar
  15. 15.
    G. Matheron, “Ensembles fermes aleatoires, ensembles semi-markoviens et polyedres poissoniens”, Adv. Appl. Prob., 4, 508–541, 1972.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G. Matheron, “Random sets theory and its applications to stereology”, J. Microscopy, 95, 15–23, 1972.CrossRefGoogle Scholar
  17. 17.
    G. Matheron. Random Sets and Integral Geometry (Wiley, New-York, 1975).zbMATHGoogle Scholar
  18. 18.
    C. Peyrega, D. Jeulin, C. Delisée, and J. Malvestio, “3D morphological modelling of a random fibrous network”, Im. Anal. Ster., 28, 129–141, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    C. Redenbach, and I. Vecchio, “Statistical analysis and stochastic modelling of fibre composites”, Composites Sci. Tech., 71, 107–112, 2011.CrossRefGoogle Scholar
  20. 20.
    K. Robb, O. Wirjadi, and K. Schladitz, “Fiber orientation estimation from 3D image data: Practical algorithms, visualization, and interpretation”, In 7th International Conference on Hybrid Intelligent Systems (HIS), IEEE, 320–325, 2007.Google Scholar
  21. 21.
    R. Schneider, and W. Weil, Stochastic and Integral Geometry (Springer, Berlin, 2008).CrossRefzbMATHGoogle Scholar
  22. 22.
    J. Serra, “The Boolean model and random sets”, Comp. Graph. Im. Proc., 12, 99–126, 1980.CrossRefGoogle Scholar
  23. 23.
    H. S. Sukiasian, and W. Gille, “Relation between the chord length distribution of an infinitely long cylinder and that of its base”, Journal of Math. Physics, 48, 53305–53312, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    H. Wang, A. Pietrasanta, D. Jeulin, F. Willot, M. Faessel, L. Sorbier, M. Moreaud, “Modelling mesoporous alumina microstructure with 3D random models of platelets”, J. Microscopy, 260, 287–301, 2015.CrossRefGoogle Scholar
  25. 25.
    E. Weisstein, MathWorld, http://mathworld.wolfram.com, accessed August 4, 2015.Google Scholar
  26. 26.
    Mathematica software version 10. 2, Wolfram Research, Inc., Champaign, Illinois, 2015.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Mines ParisTechPSL Research UniversityParisFrance

Personalised recommendations