Skip to main content
Log in

Uniqueness theorems for solutions of Painlevé transcendents

  • Real and Complex Analysis
  • Published:
Journal of Contemporary Mathematical Analysis Aims and scope Submit manuscript

Abstract

The paper deals with the uniqueness problems when two meromorphic functions f and g share three distinct values CM and f satisfies the first, second or fourth Painlevé transcendents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).

    MATH  Google Scholar 

  2. V. Gromak, “The first higher order Painlevé differential equations”, Differential Equations, 35, 37–41, 1999.

    MathSciNet  MATH  Google Scholar 

  3. V. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane (Walter de Gruyter, Berlin, New York, 2002).

    Book  MATH  Google Scholar 

  4. Y. Z. He, “Value distribution of the higher order analogues of the first Painlevé equation”, Value distribution theory and related topics, edited by G. Barsegian, I. Laine and C. C. Yang, Kluwer, London.

  5. A. Hinkkanen, I. Laine, “Solutions of the first and second Painlevé equations are meromorphic”, J. Anal. Math., 79, 345–377, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Laine, Nevanlinna Theory and Complex Differential Equations (de Gruyter, Berlin-New, York, 1993).

    Book  MATH  Google Scholar 

  7. X. M. Li, H. X. Yi, “Meromorphic functions sharing three values”, J. Math. Soc. Japan, 56, 26–36, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. C. Lin and K. Tohge, “On shared-value properties of painlevé transcendents”, Computational Methods and Function Theory, 2, 477–499, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Mazzocco, “Rational solutions of the Painlevé VI equation”, J. Phys., A34 (11), 2281–2294, 2001.

    MathSciNet  MATH  Google Scholar 

  10. Y. Murata, “Rational solutions of the second and the fourth Painlevé equations”, Funkcial. Ekvac., 28, 1–32, 1985.

    MathSciNet  MATH  Google Scholar 

  11. Y. Sasaki, “Value distribution of the fifth Painlevé transcendents in sectorial domains”, J. Math. Anal. Appl., 330, 817–828, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Shimomura, “Value distribution of Painlevé transcendenrs of the first and second kind”, J. Anal. Math., 82, 333–346, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Shimomura, “On deficiencies of small functions for Painlevé transcendenrs of the fourth kind”, Ann. Acad. Sci. Fenn. Math., 27, 109–120, 2002.

    MathSciNet  MATH  Google Scholar 

  14. N. Steinmetz, “On Painlevé’ s Equations I, II and IV”, J. Anal. Math., 82, 363–377, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Wang, H. P. Cai, “Uniqueness theorems for solutions of differential equations”, J. Sys. Sci and Math. Scis., 26, 21–30, 2006.

    MathSciNet  MATH  Google Scholar 

  16. C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions (New York, Dordrecht 2003).

    Book  MATH  Google Scholar 

  17. H. X. Yi, “Unicity theorems for meromorphic functions that share three values”, Kodai Math. J., 18, 300–314, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. C. Zhang, “Meromorphic functions sharing three values”, Indian J. Pure Appl. Math., 30, 667–682, 1999.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhang.

Additional information

Original Russian Text © X. B. Zhang, Y. Han, J. F. Xu, 2016, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2016, No. 4, pp. 70-80.

This research was supported by the National Natural Science Foundation of China (Grant No. 11401574, 11501566), the Tian Yuan Special Funds of the National Natural Science Foundation of China (Grant No. 11426215), the Fundamental Research Funds for the Central Universities (Grant No. 3122016L001), the Training plan for the Outstanding Young Teachers in Higher Education of Guangdong (Grant No. Yq 2013159), and NSF of Guangdong Province (Nos. 2016A030313002, 2015A030313644)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.B., Han, Y. & Xu, J.F. Uniqueness theorems for solutions of Painlevé transcendents. J. Contemp. Mathemat. Anal. 51, 208–214 (2016). https://doi.org/10.3103/S1068362316040063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362316040063

Keywords

MSC2010 numbers

Navigation