Abstract
The paper deals with the uniqueness problems when two meromorphic functions f and g share three distinct values CM and f satisfies the first, second or fourth Painlevé transcendents.
Similar content being viewed by others
References
W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).
V. Gromak, “The first higher order Painlevé differential equations”, Differential Equations, 35, 37–41, 1999.
V. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane (Walter de Gruyter, Berlin, New York, 2002).
Y. Z. He, “Value distribution of the higher order analogues of the first Painlevé equation”, Value distribution theory and related topics, edited by G. Barsegian, I. Laine and C. C. Yang, Kluwer, London.
A. Hinkkanen, I. Laine, “Solutions of the first and second Painlevé equations are meromorphic”, J. Anal. Math., 79, 345–377, 1999.
I. Laine, Nevanlinna Theory and Complex Differential Equations (de Gruyter, Berlin-New, York, 1993).
X. M. Li, H. X. Yi, “Meromorphic functions sharing three values”, J. Math. Soc. Japan, 56, 26–36, 2004.
W. C. Lin and K. Tohge, “On shared-value properties of painlevé transcendents”, Computational Methods and Function Theory, 2, 477–499, 2007.
M. Mazzocco, “Rational solutions of the Painlevé VI equation”, J. Phys., A34 (11), 2281–2294, 2001.
Y. Murata, “Rational solutions of the second and the fourth Painlevé equations”, Funkcial. Ekvac., 28, 1–32, 1985.
Y. Sasaki, “Value distribution of the fifth Painlevé transcendents in sectorial domains”, J. Math. Anal. Appl., 330, 817–828, 2007.
S. Shimomura, “Value distribution of Painlevé transcendenrs of the first and second kind”, J. Anal. Math., 82, 333–346, 2000.
S. Shimomura, “On deficiencies of small functions for Painlevé transcendenrs of the fourth kind”, Ann. Acad. Sci. Fenn. Math., 27, 109–120, 2002.
N. Steinmetz, “On Painlevé’ s Equations I, II and IV”, J. Anal. Math., 82, 363–377, 2000.
J. Wang, H. P. Cai, “Uniqueness theorems for solutions of differential equations”, J. Sys. Sci and Math. Scis., 26, 21–30, 2006.
C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions (New York, Dordrecht 2003).
H. X. Yi, “Unicity theorems for meromorphic functions that share three values”, Kodai Math. J., 18, 300–314, 1995.
Q. C. Zhang, “Meromorphic functions sharing three values”, Indian J. Pure Appl. Math., 30, 667–682, 1999.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © X. B. Zhang, Y. Han, J. F. Xu, 2016, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2016, No. 4, pp. 70-80.
This research was supported by the National Natural Science Foundation of China (Grant No. 11401574, 11501566), the Tian Yuan Special Funds of the National Natural Science Foundation of China (Grant No. 11426215), the Fundamental Research Funds for the Central Universities (Grant No. 3122016L001), the Training plan for the Outstanding Young Teachers in Higher Education of Guangdong (Grant No. Yq 2013159), and NSF of Guangdong Province (Nos. 2016A030313002, 2015A030313644)
About this article
Cite this article
Zhang, X.B., Han, Y. & Xu, J.F. Uniqueness theorems for solutions of Painlevé transcendents. J. Contemp. Mathemat. Anal. 51, 208–214 (2016). https://doi.org/10.3103/S1068362316040063
Received:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068362316040063