Advertisement

Spectral stability of higher order semi-elliptic operators

  • G. Karapetyan
  • N. Saribekyan
Differential Equations

Abstract

The paper gives estimates for the variation of eigenvalues of Dirichlet problem for semielliptic operators with homogeneous boundary conditions upon variation of the boundary of the domain on which the problem is considered. Operators of arbitrary even order in each direction and open sets with Lipschitz smooth boundary are considered.

Keywords

Sobolev space eigenvalue compact operator semi-elliptic operator spectrum approximation Dirichlet boundary condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Burenkov, P. D. Lamberti, “Spectral stability of higher order uniformly elliptic operators”, Sobolev Spaces inMathematics II, International Mathematical Series, 9, 69–102, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    I. Babuska, R. Vyborny, “Continious Dependenceof Eigenvalues on the Domain”, CzechoslovakMathematical Journal, 15 2, 169–178, 1965.MathSciNetzbMATHGoogle Scholar
  3. 3.
    E. B. Davies, Spectral Theory and Differential Operators (Cambridge University Press, Cambridge, 1995).CrossRefzbMATHGoogle Scholar
  4. 4.
    M. S. Berger, Nonlinearity and Functional Analysis (Academic Press, New York-London, 1977).zbMATHGoogle Scholar
  5. 5.
    V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1971).zbMATHGoogle Scholar
  6. 6.
    S. Agmon, Lectures on Elliptic Boundary Value Problems (Van Nostrand, Amsterdam, 1965).zbMATHGoogle Scholar
  7. 7.
    O. V. Besov, V. P. Ilin, S. M. Nikolski, Integral Representations of Functions and Imbedding Theorems (Nauka, M., 1975).Google Scholar
  8. 8.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York, 1978).zbMATHGoogle Scholar
  9. 9.
    D. F. Kalinichenko, N. V. Miroshin, Friedrichs Inequality, in: Encyclopaedia of Mathematics (European Mathematical Society, Springer, 2002).Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Russian-Armenian (Slavonic) UniversityYerevanArmenia

Personalised recommendations