Skip to main content

Superconductor-Insulator Transition in Ultra-Thin Sb2Te3 Nanoplates

Abstract

The conductivity of single-crystal nanoplates of the Sb2Te3 topological insulator has been investigated. A sharp drop in resistance occurs in ultrathin Sb2Te3 nanoplates at a temperature of about 4 K, which is a manifestation of superconductivity. The results show that the presence of an optimal degree of disorder is a necessary condition for the onset of superconductivity. A superconductor-insulator transition, tunable by a magnetic field, is observed in these nanoplates. The temperature dependence of the magnetoresistance in fields below the critical value (B < BC) shows a successive transformation of a weak antilocalization anomaly into a superconducting transition. The value of the correlation length exponent ν = 0.75 ± 0.05 was obtained using the scaling theory.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Goldman, A.M., Inter. J. of Mod. Phys. B, 2010, vol. 24, p. 4081.

    Article  ADS  Google Scholar 

  2. Gantmakher, V.F. and Dolgopolov, V.T., Physics-Uspekhi, 2010, vol. 33, p. 1.

    Article  ADS  Google Scholar 

  3. Fisher, M.P.A., Phys. Rev. Lett., 1990, vol. 67, p. 923.

    Article  ADS  Google Scholar 

  4. Sato, M. and Ando, Y., Rep. Prog. Phys., 2017, vol. 80, p. 076501.

    Article  ADS  Google Scholar 

  5. Zhang, H., Liu, Ch-X., Qi, X-L., Dai, Xi., Fang, Zh., and Zhang, Sh-Ch., Nature Phys., 2009, vol. 5, p. 438.

    Article  ADS  Google Scholar 

  6. Zhang, J., Chang, C.-Z., Zhang, Z., Wen, J., Feng, X., Li, K., Liu, M., He, K., Wang, L., Chen, X., Xue, Q.-K., Ma, X., and Wang, Y., Nature Commun., 2011, vol. 2, p. 574.

    Article  ADS  Google Scholar 

  7. Hasan, M.Z. and Kane, C.L., Rev. Modern Phys., 2011, vol. 82, p. 3045.

    Article  ADS  Google Scholar 

  8. Qi, X-L. and Zhang, Sh-Ch., Rev. Mod. Phys., 2011, vol. 83, p. 1057.

    Article  ADS  Google Scholar 

  9. Fu, L. and Kane, C.L., Phys. Rev. Lett., 2008, vol. 100, p. 096407.

    Article  ADS  Google Scholar 

  10. Sasaki S., Kriener, M., Segawa, K., et al., Phys. Rev. Lett., 2011, vol. 107, p. 217001.

    Article  ADS  Google Scholar 

  11. Hor, Y.S., Williams, A.J., Checkelsky, J.G., et al., Phys. Rev. Lett, 2010, vol. 104, p. 057001.

    Article  ADS  Google Scholar 

  12. Matsubayashi, K., Terai T., Zhou, J. S., and Uwatoko, Y., Phys. Rev. B, 2014, vol. 90, p. 125126.

    Article  ADS  Google Scholar 

  13. Zhu, J., Zhang, J., Kong, P. et al., Sci. Rep., 2013, vol. 3, p. 2016.

    Article  Google Scholar 

  14. Herbut, I.F. and Janssen, L., Phys. Rev. Lett., 2014, vo1. 113, p. 106401.

    Article  ADS  Google Scholar 

  15. Wang, M.-X., Liu, C., Xu, J.-P., et al., Science, 2012, vol 336, no. 6077, p. 52.

    Article  ADS  Google Scholar 

  16. Zhong R.D., Schneeloch J.A., Shi X.Y., et al., Phys. Rev. B, 2013, vol. 88, p. 020505(R).

    Article  ADS  Google Scholar 

  17. Arpino, K.E., Wallace, D.C., Nie, Y.F., Birol, T., King, P.D.C., Chatterjee, S., Uchida, M., Koohpayeh, S.M., Wen, J.J., Page, K., Fennie, C.J., Shen, K.M., and McQueen, T.M., Phys. Rev. Lett., 112, 017002 (2014).

    Article  ADS  Google Scholar 

  18. Liu, Z., Yao, X., Shao, J., Zuo, M., Pi, L., Tan, S., Zhang, C., and Zhang, Y., J. Am. Chem. Soc., 2015, vol. 137, p. 10512.

    Article  Google Scholar 

  19. Sasaki, S., Segawa, K., and Ando, Y., Phys. Rev. B: Condens., 2014, vol. 90, p. 220504.

    Article  ADS  Google Scholar 

  20. Zhao, L., Deng, H., Korzhovska, I., Begliarbekov, M., Chen, Zh., Andrade, E., Rosenthal, E., Pasupathy, A., Oganesyan, V., and Krusin-Elbaum, L., Nat. Commun., 2015, vol. 6, p. 8279.

    Article  ADS  Google Scholar 

  21. Goldman, A.M. and Marković, N., Phys. Today, 1998, vol. 51, no. 11, p. 39.

    Article  Google Scholar 

  22. Kuzanyan, A.A. and Harutyunyan, S.R., J. Contemp. Phys., 2021, vol. 56, p. 359.

    Article  Google Scholar 

  23. Lu, H-Z. and Shen, S-Q., arXiv:1409.1299v1 [cond-mat.mes-hall] 2014.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Professor Yang Yuan Chen for the opportunity to carry out measurements at the Institute of Physics (Taipei, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Harutyunyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Harutyunyan, S.R. Superconductor-Insulator Transition in Ultra-Thin Sb2Te3 Nanoplates. J. Contemp. Phys. 57, 81–86 (2022). https://doi.org/10.3103/S1068337222010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222010121

Keywords:

  • nanoplates
  • magnetoresistance
  • superconductor-insulator transition
  • weak localization
  • weak antilocalization