Skip to main content

Electrode Material for Supercapacitors Based on Products of Solid Phase Pyrolysis of Metal-Phthalocyanines

Abstract

Ni@C nanocomposites in a graphite-like carbon matrix and cobalt nanoparticles in carbon nanotubes were obtained by solid-phase pyrolysis of nickel phthalocyanine (NiC32N8H16) and cobalt phthalocyanine (CoC32N8H16). The metal concentrations in the carbon matrix in both cases in Ni/C and Co/C are the same—12 wt %. The structure and morphology of the obtained samples were studied by high-resolution scanning and transmission electron microscopy as well as X-ray diffraction. The capacitive and resistive characteristics of the obtained Ni/C and Co/C compounds as an electrode material for supercapacitors (SC) have been investigated. The specific capacitances measured by cyclic voltammetry are 12 F/g and 8 F/g for Ni/C and Co/C samples, respectively. The synthesized compounds can become a promising electrode material for super capacitors with an electrolyte solution of H2SO4.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Liu, C., Li, F., Ma, L.-P., and Cheng, H.M., Adv. Mater., 2010, vol. 22, p. 28.

    Article  Google Scholar 

  2. Wang, Y. and Xia, Y., Adv. Mater., 2013, vol. 25, p. 5336.

    Article  Google Scholar 

  3. Chu, A. and Braatz, P., Journal of Power Sources, 2002, vol. 112, p. 236.

    Article  ADS  Google Scholar 

  4. Miller, J.R. and Simon, I., Science, 2008, vol. 321, p. 651.

    Article  Google Scholar 

  5. Kötz, R. and Carlen, M., Electrochim. Acta, 2000, vol. 45, p. 2483.

    Article  Google Scholar 

  6. Stoller, M., Park, S., Zhu, Y., and An, J., and Ruoff, R., Nano Lett., 2008, vol. 8, p. 3498.

    Article  ADS  Google Scholar 

  7. Aricò, A.S., Bruce, P., et al., Nature Materials, 2005, vol. 4, p. 366.

    Article  ADS  Google Scholar 

  8. Endo, M., Takeda, T., Kim, Y., Koshiba, K., and Ishii, K., Carbon Sci., 2001, vol. 1, p. 117.

    Google Scholar 

  9. Wang, G., Zhang, L., and Zhang, J., Chem. Soc. Rev., 2012, vol. 41, p. 797.

    Article  Google Scholar 

  10. Forouzandeh, P., Kumaravel, V., and Pillai, S.C., Catalysts, 2020, vol. 10, p. 969.

    Article  Google Scholar 

  11. Frackowiak, E. and Beguin, F., Carbon, 2001, vol. 39, p. 937.

    Article  Google Scholar 

  12. Zhang, L.L. and Zhao, X.S., Chem. Soc. Rev., 2009, vol. 38, p. 2520.

    Article  Google Scholar 

  13. Zheng, J.P., Cygan, P.J., et al., J. Electrochem. Soc., 1995, vol. 142, p. 2699.

    Article  ADS  Google Scholar 

  14. Zheng Y., Ding H., and Zhang M., Materials Research Bulletin, 2009, vol. 44, p. 403.

    Article  Google Scholar 

  15. Jang, G.S., Ameen, S., Akhtar, M.S., and Shin, H.S., Ceram. Int., 2018, vol. 44, p. 588.

    Article  Google Scholar 

  16. Sawangphruk, M., Srimuk, P., Chiochan, P., Krittayavathananon, A., Luanwuthi, S., and Limtrakul, J., Carbon, 2013, vol. 60, p. 109.

    Article  Google Scholar 

  17. Wei K. and Kim I.S. Application of Nanofibers in Supercapacitors. In: Ding B., Yu J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology., Berlin, Heidelberg: Springer, 2014.

    Google Scholar 

  18. Chen, Q.L., Xue, K.H., Shen, W., Tao, F.F., Yin, S.Y., and Xu, W., Electrochimica Acta, 2004, vol. 49, p. 4157.

    Article  Google Scholar 

  19. Jurewicz, K., Delpeux, S., et al., Chemical Physics Letters, 2001, vol. 347, p. 36.

    Article  ADS  Google Scholar 

  20. Reddy, A. L. M., and Ramaprabhu, S., Physical Chemistry C, 2007, vol. 111, p. 7727.

    Article  Google Scholar 

  21. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., and Sharoyan, E.G., J. Contemp. Phys., 2010, vol. 45, p. 132.

    Article  Google Scholar 

  22. Manukyan, A.S., Mirzakhanyan, A.A., Khachatryan, T.K., Badalyan, G.R., Abdulvakhidov, K.G., Bugaev, L.A., and Sharoyan, E.G., J. Contemp. Phys., 2012, vol. 47, p. 292.

    Article  Google Scholar 

  23. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., Fedorenko, A.G., Lianguzov, N.V., Yuzyuk, Yu.I., Bugaev, L.A., and Sharoyan, E.G., J. Nanopart. Res., 2012, vol. 14, p. 982.

    Article  ADS  Google Scholar 

  24. Manukyan, A.S., Mirzakhanyan, A.A., Khachatyran, T.K., Khachaturyan, R.D., Badalyan, G.R., and Sharoyan, E.G., Armenian J. Physics, 2013, vol. 6, p. 61.

    Google Scholar 

  25. Manukyan, A., Mirzakhanyan, A., Sajti, L., Khachaturyan, R., Kaniukov, E., Lobanovsky, L., and Sharoyan, E., NANO, 2015, vol. 10, p. 1550089.

    Article  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the SC MESCS RA and the State Committee for Science and Technology of the Republic of Belorus in the framework of the joint scientific project no. ArmBel-Ap18_1c_2 and T18ARMG-001, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Gyulasaryan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gyulasaryan, H.T., Azizbekyan, G.G., Sisakyan, N.S. et al. Electrode Material for Supercapacitors Based on Products of Solid Phase Pyrolysis of Metal-Phthalocyanines. J. Contemp. Phys. 57, 76–80 (2022). https://doi.org/10.3103/S106833722201011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833722201011X

Keywords:

  • metal phthalocyanines
  • solid-phase pyrolysis
  • carbon nanotubes
  • supercapacitors