Skip to main content

Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes

Abstract

Single wall version of carbon nanotubes (SWCNTs) is promising for the detection of many important gases including gases exhaled by the organism. Properties of such CNT-noble metal sensors, detectors of gases exhaled by the organism, biosensors and other applications of CNT sensors in medicine are reported. Very promising is the realization of gas sensors based on metal oxides (especially SnO2) doped with CNTs. VOC sensors based on ruthenate multi-walled carbon nanotubes coated with tin-dioxide nanoparticles (MWCNTs/SnO2) nanocomposite structures were prepared and investigated in Yerevan State University (YSU) using three methods. The optimal conditions, operating temperature and the mass ratio of the components are established for the manufacturing of acetone and toluene as well as ethanol and methanol vapors detectors. The results of research works related to the study of MWCNT-SnO2 nanocomposite sensors of propylene glycol (PG), dimethylformamide (DMF) and formaldehyde (FA) vapors are also presented in this paper. The dependence of the sensor response on gas concentration is linear.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Iijima, S., Nature, 1991, vol. 354, p. 56.

    ADS  Google Scholar 

  2. Harris, P., Carbon nanotubes and related structures. USA: Cambridge University Press, p. 279 (1999).

    Google Scholar 

  3. Ellis, J.E. and Star, A., ChemPlusChem, 2016, vol. 81, p. 1248.

    Google Scholar 

  4. Ahmadi, M. et al., Compos. Sci. Technol., 2016, vol. 134, p. 1.

    Google Scholar 

  5. Maruyama, B. and Alam, K., SAMPE J., 2002, vol. 38, p. 59.

    Google Scholar 

  6. Wu, Z. et al., Nanoscale., 2020, vol. 12, p. 10149.

    Google Scholar 

  7. Mo, Z. et al., Carbon, 2019, vol. 144, p. 433.

    Google Scholar 

  8. Souto, L.F.C. and Soares, B.G., Prog. Org. Coat., 2020, vol. 143, p. 105598.

    Google Scholar 

  9. Hassan, A.G. et al., Surf. Coat. Technol., 2020, vol. 401, p. 126257.

    Google Scholar 

  10. Medupin, R.O. et al., Sci. Rep., 2019, vol. 9, p. 1.

    Google Scholar 

  11. Abidin, M.S.Z. et al., Compos. Sci. Technol., 2019, vol. 170, p. 85.

    Google Scholar 

  12. Feng, D., J. Mater. Chem. C, 2019, vol. 7, p. 7938.

    Google Scholar 

  13. Zhou, E. et al., Carbon, 2018, vol. 133, p. 316.

    Google Scholar 

  14. Chen, M. et al., Langmuir, 2019, vol. 35, p. 6321.

    Google Scholar 

  15. Guo, F. et al. Nano Lett., 2019, vol. 19, p. 6377.

    ADS  Google Scholar 

  16. Chen, M. et al., ACS Appl., 2019, vol. 11, p. 42156.

    Google Scholar 

  17. Chen, M. et al., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 31208.

    Google Scholar 

  18. Chen, M. et al., Chem. Mater., 2017, vol. 29, p. 9680.

    Google Scholar 

  19. Chen, M. et al., Chem. Eng. J., 2020, vol. 220, p. 124633.

    ADS  Google Scholar 

  20. Chen, M. and Shao. L.L., Chem. Eng. J., 2016, vol. 304, p. 629.

    Google Scholar 

  21. Chen, M. et al., Chem. Eng. J., 2017, vol. 313, p. 791.

    Google Scholar 

  22. Chen M., et al., Chem. Eng. J., 2016, vol. 304, p. 303.

    Google Scholar 

  23. Chen, M. et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 26030.

    Google Scholar 

  24. Chen, M. et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 17949.

    Google Scholar 

  25. Chen, M. et al., J. Mater. Chem. C., 2014, vol. 2, p. 10312.

    Google Scholar 

  26. Janudin, N. et al., ZULFAQAR Journal of Defence Science, Engineering & Technology, 2018, vol. 65, p. 1.

    Google Scholar 

  27. Janudin, N. et al., J. Nanotechnol., 2019, vol. 2018, p. 1.

    Google Scholar 

  28. Maity, D. et al., Sens. Actuators B, 2018, vol. 261, p. 297.

    Google Scholar 

  29. Schroeder, V. et al., Chem. Rev., 2018, vol. 119, p. 599.

    Google Scholar 

  30. Schroeder, V. et al., RSC Adv., 2020, vol. 10, p. 43704.

    Google Scholar 

  31. Aroutiounian, V.M., Sens Transducers, 2018, vol. 223, no. 7, p. 9.

    Google Scholar 

  32. Aroutiounian, V.M. et al., Sens. Actuator B, 2013, vol. 177, p. 308.

    Google Scholar 

  33. Adamyan, Z.N. et al., South Florida Journal of Development Miami, 2020, vol. 2, no. 1, p. 1067.

    Google Scholar 

  34. Aroutiounian, V.M., Armenian Journal of Physics, 2018, vol. 11, no. 1, p. 39.

    Google Scholar 

  35. Yahya, M.S. and Ismail, M., J. Phys. Chem. C., 2018, vol. 122, p. 11222.

    Google Scholar 

  36. Mananghaya, M. et al., Sci. Rep., 2016, vol. 6, p. 27370.

    ADS  Google Scholar 

  37. Park, S. et al., Nanomaterials, 2018, vol. 8, p. 378.

    Google Scholar 

  38. Song, Y. et al., J. Alloys Compd., 2020, vol. 816, p. 152648.

    Google Scholar 

  39. Geier, M.L. et al., Nano Lett., 2013, vol. 13, no. 10, p. 4810.

    ADS  Google Scholar 

  40. Cao, Q. and Rogers, J., Adv. Mater., 2009, vol. 21, p. 29.

    Google Scholar 

  41. Park, S. et al., Nanoscale, 2013, vol. 5, p. 1727.

    ADS  Google Scholar 

  42. Shulaker, M.M. et al., Nature, 2013, vol. 501, p. 526.

    ADS  Google Scholar 

  43. Hong, G. et al., Chem. Rev., 2015, vol. 115, p. 10816.

    Google Scholar 

  44. Wang, J., Electroanalysis, 2005, vol. 17, p. 7.

    Google Scholar 

  45. Arash, B. and Wang, Q., Sci. Rep., 2013, vol. 3, p. 1782.

    ADS  Google Scholar 

  46. Chen, G. et al., Ibid, 2011, vol. 2, p. 343.

    Google Scholar 

  47. Zhang, X. and Cui, H., Nanoscale Research Letters, 2017, vol. 12, p. 177.

    ADS  Google Scholar 

  48. Zaporotskova, I.V. et al., Modern Electronic Materials, 2016, vol. 2, p. 9.

    Google Scholar 

  49. Bannov, A.G. et al., Micromachines, 2021, vol. 12, p. 186.

    Google Scholar 

  50. Aroutiounian, V.M., Lithuanian Journal of Physics, 2015, vol. 55, p. 319.

    Google Scholar 

  51. Kim, J., Journal of Nanomaterials, 2012, ID: 741647.

  52. Tang, S. et al., Frontiers in chem, 2020, vol. 8, p. 174.

    ADS  Google Scholar 

  53. Wang, Y. and Yeow, J.T.W., J. Sensors, 2009, ID: 493904.

  54. Camilli, L. and Passacantando, M., Chemosensors, 2018, vol. 6, p. 62.

    Google Scholar 

  55. Zanolli, Z.et al., ACS Nano, 2011, vol. 5, p. 4592.

    Google Scholar 

  56. Penza, M. et al., Sens. Actuators B, 2009, vol. 140, p. 176.

    Google Scholar 

  57. Shao, M., Journal of Power Sources, 1996, vol. 5, p. 2433.

    Google Scholar 

  58. Mubeen, S. et al., J. of Physical Chemistry C, 2014, vol. 17, p. 6321.

    Google Scholar 

  59. Lundström, I. et al., Sens Actuators B, 1990, vol. 1, p. 15.

    Google Scholar 

  60. Abdelhalim, A. et al., Nanotechnology, 2014, vol. 25, p. 055208.

    ADS  Google Scholar 

  61. Mubeen, S. et al., Analytical Chemistry, 2015, vol. 82, p. 250.

    Google Scholar 

  62. Goldsmith, B.R., Science, 2007, vol. 315 (5808), p. 77.

    ADS  Google Scholar 

  63. Gonget, J. et al., Sensors.Actuators B, 2008, vol. 130, p. 829.

    Google Scholar 

  64. Rigoni, F. et al., Carbon, 2014, vol. 80, p. 356.

    Google Scholar 

  65. Ellis, J.E. et al., J. Phys. Chem. Lett., 2015, vol. 6, p. 712.

    Google Scholar 

  66. Sun, Y. and Wang, H.H., Adv. Mater., 2007, vol. 19, p. 2818.

    Google Scholar 

  67. Cui, S.et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 4898.

    Google Scholar 

  68. Ding, M., Sorescu, D.C., and Star, A., J. Am. Chem. Soc., 2013, vol. 135, p. 9015.

    Google Scholar 

  69. Dang, L. et al., J. Mater. Chem. A, 2014, vol. 2, p. 4558.

    Google Scholar 

  70. Liu, H. et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 840.

    ADS  Google Scholar 

  71. Peng, G. et al., J. Mater. Chem. C, 2016, vol. 4, p. 657.

    Google Scholar 

  72. Jurs, P.C., Bakken, G.A., and McClelland, H.E., Chem. Rev., 2000, vol. 1, p. 2649.

    Google Scholar 

  73. Kubert, N.J. et al., ACS Nano, 2013, vol. 7, p. 280.

    Google Scholar 

  74. Chatterjee, S., Castro, M., and Feller, J.F., Sens. Actuators B, 2015, vol. 220, p. 840.

    Google Scholar 

  75. Peng, G., Tisch, U., and Haick, H., Nano Lett., 2009, vol. 9, p. 1362.

    ADS  Google Scholar 

  76. Peng, G., Trock, E., and Haick, H., Nano Lett., 2008, vol. 8, p. 3631.

    ADS  Google Scholar 

  77. Hong, H.P. et al., Sens. Actuators B, 2015, vol. 220, p. 27.

    Google Scholar 

  78. Aroutiounian, V.M., J. Nanomed Nanotechnol., 2020, vol. 11, p. 3.

    Google Scholar 

  79. Aroutiounian, V.M., Ibid, 2021, vol. 12, p. 3.

    Google Scholar 

  80. Aroutiounian, V.M., Biomedical J Sci & Tech Research, 2019, vol. 12, p. 283.

    Google Scholar 

  81. Dedov, I.I. and Shestakova, M.V., Diabetes mellitus: diagnosis, treatment, prevention. Medical Information Agency, LLC Publishing House, 2011.

    Google Scholar 

  82. Saasa, V. et al., Diagnostics, 2018, vol. 8, p. 12.

    Google Scholar 

  83. Tang, L. et al., Sensors (Basel), 2020, vol. 23, p. 6925.

    ADS  Google Scholar 

  84. Rydosz, A., Sensors, 2018, vol. 18, p. 2298.

    ADS  Google Scholar 

  85. Hopley, E.L. et al., Advance in Biotechnology Advances, 2015.

  86. Novak, J.P. et al., Applied Physics Letters, 2003, vol. 83, p. 4026.

    ADS  Google Scholar 

  87. Aroutiounian, V.M., Int. Sci. J. Alternative Energy Ecology, 2018, vol. 38, p. 249.

    Google Scholar 

  88. Aroutiounian, V.M. et al., Int J Emerging Trends in Science and Technology, 2014, vol. 1, no. 8, p. 1309.

    Google Scholar 

  89. Ahmadnia-Feyzabad, S. et al., Sens Actuators B Chem., 2012, vol. 166–167, p. 150.

    Google Scholar 

  90. Salehi, S. et al., Ibid, 2014, vol. 205, p. 261.

    Google Scholar 

  91. Koo, W.T. et al., ACS Appl. Mater. Inter., 2017, vol. 9, no. 11, p. 18069.

    Google Scholar 

  92. Mirzaei, A., Hashemi, B., and Janghorban, K., J. Mater. Sci. Mater. Electron, 2016, vol. 27, p. 3109.

    Google Scholar 

  93. Jiang, Z. et al., Ceram. Int., 2016, vol. 42, no. 14, p. 15881.

    Google Scholar 

  94. Sensor composition for acetone detection in breath. Patents US 9.470,675 B2, EP2845009B1.

  95. Narjinary, M. et al., Mater. Des., 2017, vol. 115, p. 158.

    Google Scholar 

  96. Cao, Z. et al., Nanoscience Res. Lett., 2016, vol. 11, p. 347.

    ADS  Google Scholar 

  97. Aroutiounian, V.M. and Hovhannisyan, A., Biomed. J. Sci. & Tech. Res., 2020, vol. 27, no. 1, p. 20452.

    Google Scholar 

  98. Yang, N. et al., Sens. Actuators B, 2015, vol. 207, p. 690.

    Google Scholar 

  99. Clark, L.C. and Lyons, C., Ann. N. Y. Acad. Sci., 1962, vol. 102, p. 29.

    ADS  Google Scholar 

  100. Raicopol, M. et al., Nanoscale Res. Lett., 2013, vol. 316, p. 1.

    Google Scholar 

  101. Guo, X. et al., Adv. Mater., 2013, vol. 25, no. 25, p. 3397.

    Google Scholar 

  102. Allen, B.L., Kichambare, P.D., and Star, A., Adv. Mater., 2007, vol. 19, no. 11, p. 1439.

    Google Scholar 

  103. D.R. Thévenot et al., Biosens Bioelectron, 16(1-2), 121 (2001).

    Google Scholar 

  104. Byon, H.R. and Choi, H.C., J. Am. Chem. Soc., 2006, vol. 128, no. 7, p. 2188.

    Google Scholar 

  105. Tang, X.W. et al., Nano Lett., 2006, vol. 6, no. 8, p. 1632.

    ADS  Google Scholar 

  106. Kim, M.J.B. et al., J. Critical reviews, 2020, vol. 7, p. 2923.

    Google Scholar 

  107. Gruner, G., Analyt. Bioanalytical Chemistry, 2006, vol. 384, p. 322.

    Google Scholar 

  108. Nie, C. et al., J. Electroanal Chem., 2012, vol. 666, p. 85.

    Google Scholar 

  109. Anker, J.N. et al., In: On-sensing with plasmonic nanosensors. UK, London: Macmillan Publishers Ltd, 2009, p. 308.

    Google Scholar 

  110. Farrera, C., Torres, A., and Feliu, F., ACS Nano, 2017, vol. 11, no. 11, p. 10637.

    Google Scholar 

  111. Shao, L., Gao, Y., and Yan, F., Sensors, 2011, vol. 11, no. 12, p. 11736.

    ADS  Google Scholar 

  112. Ramgir, N.S., Yang, Y., and Zacharias, M., Nanowire-based sensors. Small, 2010, vol. 6, no. 16, p. 1705.

    Google Scholar 

  113. Chen, Z. et al., Nanoscale, 2011, vol. 3, no. 5, p. 1949.

    ADS  Google Scholar 

  114. Liu, Y., Dong, X., and Chen, P., Chem. Soc. Rev., 2012, vol. 41, no. 6, p. 2283.

    Google Scholar 

  115. Shen, J. et al., Chem. Commun., 2012, vol. 48, p. 3686.

    Google Scholar 

  116. Gao, C. et al., Nanoscale, 2012, vol. 4, p. 1948.

    ADS  Google Scholar 

  117. Liu, Z. et al., Nano Res., 2009, vol. 2, p. 85.

    Google Scholar 

  118. Yang, W. et al., Angew. Chem. Int. Ed., 2010, vol. 49, no. 12, p. 2114.

    Google Scholar 

  119. Boghossian, A.A. et al., Chem. Sus. Chem., 2011, vol. 4, no. 7, p. 848.

    Google Scholar 

  120. Kim, S.J. et al., Acc. Chem. Res., 2017, vol. 50, no. 7, p. 1587.

    Google Scholar 

  121. Alvarezet, M.M. et al., ACS Nano, 2017, vol. 11, no. 6, p. 5195.

    Google Scholar 

  122. Kruss, S. et al., Adv. Drug Deliv. Rev., 2013, vol. 65, p. 1933.

    Google Scholar 

  123. Eatemadi, A. et al., Nanoscale Research Letters, 2014, vol. 9, p. 393.

    ADS  Google Scholar 

  124. Iverson, N.M. et al., Nat. Nanotechnol., 2013, vol. 8, p. 873.

    Google Scholar 

  125. Ménard-Moyon, C. et al., Expert Opin Drug Discov., 2010, vol. 5, no. 7, p. 691.

    Google Scholar 

  126. Wu, Y. et al., ACS Nano, 2008, vol. 2, no. 10, p. 2023.

    Google Scholar 

  127. Bisker, G. et al., Nat. Commun., 2016, vol. 7, p. 1.

    Google Scholar 

  128. Zhang, J. et al., Nat. Nanotechnol., 2013, vol. 8, no. 12, p. 959.

    ADS  Google Scholar 

  129. Beyene, A.G. et al., Biochemistry, 2018, vol. 57, no. 45, p. 6379.

    Google Scholar 

  130. Dinarvand, M. et al., Nano Lett., 2019, vol. 19, p. 6604.

    ADS  Google Scholar 

  131. Hendler, N. and Bisker, G., Sensors, 2019, vol. 19, p. 5403.

    ADS  Google Scholar 

  132. Ahn, J.-H. et al., Nano Lett., 2011, vol. 11, no. 7, p. 2743.

    ADS  Google Scholar 

  133. Reuel, N.F., Ahn, J.H., and Boghossian, A., US patent, US10, 215, 752 (2010).

  134. Pan, J., Li, F., and Choi, J.H., J. Mater. Chem. B, 2017, vol. 5, p. 6511.

    Google Scholar 

  135. Aroutiounian, V.M., Journal of Nanomedicine & Nanotechnology, 2021, vol. 12, p. 560.

    Google Scholar 

  136. Alizadeh, N., Jamalabadi, H., and Tavoli, F., IEEE Sensors J., 2020, vol. 20, no. 1, p. 5.

    ADS  Google Scholar 

  137. Han, Z.J. et al., RSC Adv., 2013, vol. 3, no. 28, p. 11058.

    ADS  Google Scholar 

  138. Nemeth, Z. et al., R Soc Open Sci., 2016, vol. 6, no. 1, p. 181294.

    Google Scholar 

  139. Meng, X. et al., J, Biomed, Mater Res., 2013, vol. 101, no. 4, p. 1095.

    Google Scholar 

  140. Mooney, E. et al., Biomaterials, 2012, vol. 33, no. 26, p. 6132.

    Google Scholar 

  141. Sheikhpour, M., Golbabaie, A., and Kasaeian, A., Mater Sci. Eng. C, 2017, vol. 76, p. 1289.

    Google Scholar 

  142. Badrzadeh, F., Rahmati-Yamchi, M., and Badrzadeh, K., Artif. Cells Nanomed. Biotechnol., 2016, vol. 44, no. 2, p. 618.

    Google Scholar 

  143. Sheikhpour, M. et al., International Journal of Nanomedicine, 2020, vol. 15, p. 7063.

    Google Scholar 

  144. Kayat, J. et al., Nanomedicine, 2011, vol. 7, p. 40.

    Google Scholar 

  145. Set, J. et al., J. Toxical Environ Health A, 2010, vol. 73, no. 21-22, p. 1521.

    Google Scholar 

  146. Han, Z.J. et al., RSC Adv., 2013, vol. 3, no. 28, p. 11058.

    ADS  Google Scholar 

  147. Pacurari, M., Castranova, V., and Vallyathan, V.J., J. Toxical. Environ. Health A, 2010, vol. 73, no. 5, p. 378.

    Google Scholar 

  148. Nasser, I.M. and Abu-Naser, S.S., Int. J. Eng. Inf. Syst., 2019, vol. 3, no. 3, p. 17.

    Google Scholar 

  149. Zhou, J. et al., Anal. Chim. Acta., 2019, vol. 996, p. 1.

    ADS  Google Scholar 

  150. Shakeel, P.M., Burhanuddin, M.A., and Desa, M.I., Measurement, 2019, vol. 145, p. 702.

    ADS  Google Scholar 

  151. Stueckle, T.A. et al., Nanotoxicology, 2017, vol. 11, no. 5, p. 613.

    Google Scholar 

  152. Gasparri, R., Sedda, G., and Spaggiari, L., Sensors, 2018, vol. 18, no. 9, p. 3029.

    ADS  Google Scholar 

  153. Khanmohammadi, A. et al., Talanta, 2020, vol. 206, p. 120251.

    Google Scholar 

  154. Zhou, L. et al., Topical In Vitro, 2017, vol. 42, p. 292.

    Google Scholar 

  155. Park, C.H. et al., ACS Sens, 2018, vol. 3, no. 11, p. 2432.

    Google Scholar 

  156. Aasi, A., Aghaei, S.M., and Panchapakesan, B., Nanotechnology, 2020, vol. 31, no. 41, p. 415707.

    Google Scholar 

  157. Choudhary, M., Singh, A., and Kaur, S., Appl. Biochem. Biotechnol., 2014, vol. 174, no. 3, p. 1188.

    Google Scholar 

  158. Wan, Q., Molecular Physics, 2018, vol. 116, p. 2205.

    ADS  Google Scholar 

  159. Gokhale, S., Kohajda, T., and Schlink, U., Sci. Total Environ., 2008, vol. 407, p. 122.

    ADS  Google Scholar 

  160. Wang, S., Ang, H.M., and Tade, M.O., Environ. Int., 2007, vol. 33, p. 694.

    Google Scholar 

  161. Inyawilert, K. et al., Sensors and Actuators B, 2014, vol. 192, p. 745.

    Google Scholar 

  162. Feyzabad, S.A. et al., Ibid, 2012, vol. 166–167, p. 150.

    Google Scholar 

  163. Li, X., Chang, Y., and Long, Y., Mater. Sci. Eng. C, 2012, vol. 32, p. 817.

    Google Scholar 

  164. Garzella, C. et al., Sens. Actuators B, 2002, vol. 83, p. 230.

    Google Scholar 

  165. Brousse, T. and Schleich, D.M., Ibid, 1996, vol. 31, p. 77.

    Google Scholar 

  166. Salaspuro, M., Scandinavian J. of Gastroenterology, 2009, vol. 44, no. 8, p. 912.

    Google Scholar 

  167. Bai, X. et al., Sens. Actuators B, 2014, vol. 193, p. 100.

    Google Scholar 

  168. Makisimovich, N. et al., Ibid B, 1996, vol. 35–36, p. 419.

    Google Scholar 

  169. Wang, L. et al., Chem. Mater., 2008, vol. 20, p. 4794.

    Google Scholar 

  170. Lerchner, J., Caspary, D., and Wolf, G., Sens. Actuators B: Chem., 2000, vol. 70, p. 57.

    Google Scholar 

  171. Consales, M. et al., Ibid B: Chem., 2009, vol. 138, p. 351.

    Google Scholar 

  172. Sasahara, T. et al., Ibid B: Chem., 2007, vol. 126, p. 536.

    Google Scholar 

  173. Hanada, M. et al., Anal. Chim. Acta, 2003, vol. 475, p. 27.

    Google Scholar 

  174. Xu, C. et al., Sensors and Actuators B, 1991, vol. 3, p. 147.

    Google Scholar 

  175. Korotcenkov, G. et al., Critical Reviews in Solid State and Materials Sciences, 2009, vol. 34, p. 1.

    ADS  Google Scholar 

  176. Adamyan, A.Z. et al., International Journal of Hydrogen Energy, 2007, vol. 32, p. 4101.

    Google Scholar 

  177. Tonezzer, M. and Hieu, N.V., Sensors and Actuators B, 2012, vol. 163, p. 146.

    Google Scholar 

  178. Wang, L.F., Journal of Physical Chemistry C, 2008, vol. 112, p. 6643.

    ADS  Google Scholar 

  179. Qin, L.P. et al., Nanotechnology, 2008, vol. 19, p. 185705.

    ADS  Google Scholar 

  180. Han, X.M. et al., Journal of Alloys and Compounds, 2008, vol. 461, p. L26.

    Google Scholar 

  181. Kwon, Y. et al., Sensors and Actuators B, 2012, vol. 173, p. 441.

    Google Scholar 

  182. Li, Y.-J., Ibid B, 2012, vol. 161, p. 734.

    Google Scholar 

  183. Tan, Y., Thin Solid Films, 2008, vol. 516, p. 7840.

    ADS  Google Scholar 

  184. Cheng, L. et al., Sensors and Actuators B, 2014, vol. 200, p. 181.

    Google Scholar 

  185. Mei, L. et al., Ibid B, 2012, vol. 166–167, p. 7.

    Google Scholar 

  186. Zhao, L., Choi, M., Kim, H.-S., and Hong, S.-H., Nanotechnology, 2007, vol. 18, p. 445501.

    Google Scholar 

  187. Ahmadnia-Feyzabad, S. et al., Ibid B, 2012, vol. 166–167, p. 150.

    Google Scholar 

  188. Aroutiounian, V.M. et al., Proc. of the 14th Int. Meeting on Chemical sensors (IMCS 2012), May 20–23, 2012, Germany, Nuremberg: p. 1085.

  189. Aroutiounian, V.M. et al., Sensors and Actuators B, 2013, vol. 177, p. 308.

    Google Scholar 

  190. Berki, P. et al., Carbon, 2013, vol. 60, p. 266.

    Google Scholar 

  191. Hieu, N.V. et al., Sensors and Actuators B, 2008, vol. 129, p. 888.

    Google Scholar 

  192. Liu, Y.-L. et al., Thin Solid Films, 2006, vol. 497, p. 355.

    ADS  Google Scholar 

  193. Wei, B.-Y. et al., Sensors and Actuators B, 2004, vol. 101, p. 81.

    Google Scholar 

  194. Korotcenkov, G., Han, S.H., and Cho, B.K., Journal of Sensor Science and Technology, 2013, vol. 22, no. 1, p. 1.

    Google Scholar 

  195. Fiorito, A. et al., Am. J. Ind. Med., 1997, vol. 32, p. 255.

    Google Scholar 

  196. Lefebvre, M.A. et al., Regul. Toxicol. Pharm., 2012, vol. 63, p. 171.

    Google Scholar 

  197. Malaguarnera, G. et al., World. J. Gastroentero., 2012, vol. 18, p. 2756.

    Google Scholar 

  198. Chang, H.Y. et al., Fertil. Steril., 2004, vol. 81, p. 1589.

    Google Scholar 

  199. Robertson, O.H., Loosli, C.G., and Puck, T.T., J. Pharmacol. Exp. Ther., 1947, vol. 91, p. 52.

    Google Scholar 

  200. Salthammer, T., Mentese, S., and Marutzky, R., Chem. Rev., 2010, vol. 110, p. 2536.

    Google Scholar 

  201. Ellenhorn, M.J. et al., Ellenhorn’s medical toxicology: diagnosis and treatment of human poisoning, 2nd edition, MD: Williams & Wilkins, Baltimore, USA, 1997, p. 1675.

    Google Scholar 

  202. Couteau, E. et al., Chem. Phys. Lett., 2003, vol. 378, p. 9.

    ADS  Google Scholar 

  203. Magrez, A. et al., Materials, 2010, vol. 3, p. 4871.

    ADS  Google Scholar 

  204. Nemeth, Z. et al., Phys. Status Solidi B, 2014, vol. 1, p. 1.

    MathSciNet  Google Scholar 

  205. Cui, S. et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 9, p. 4898.

    Google Scholar 

Download references

Funding

This work is supported by State Committee of Science of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aroutiounian.

Additional information

Translated by V.M. Aroutiounian

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aroutiounian, V.M. Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes. J. Contemp. Phys. 57, 54–75 (2022). https://doi.org/10.3103/S1068337222010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222010054

Keywords:

  • SWCNTs
  • MWCNTs/SnO2
  • VOCs gas sensor
  • breath
  • biosensor