Skip to main content

Critical Wavelength in the Metal Waveguide Partially Filled with Nonlinear Crystal

Abstract

The bandwidth in the system of the nonlinear optical crystal partially filling the cross-section of a rectangular metal waveguide is investigated. Partial filling of a metal waveguide with a nonlinear optical crystal is used to ensure the phase matching for an effective generation of THz radiation in a nonlinear crystal when it is illuminated with the femtosecond optical laser pulse. The critical wavelengths of a metal waveguide with a central symmetric arrangement of crystal plates in the waveguide are numerically calculated depending on the degree of partial filling and the dielectric permittivity of the crystal. It is shown that partial filling of the waveguide with crystal results in an expansion of the bandwidth of the fundamental mode of the odd type Н10, without improving the propagation conditions for the nearest higher even mode Н20, but on the contrary, at a certain degree of filling with the crystal excludes its occurrence.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Shin, J.H., Choi, D.H., Lee, E.S., et al., Electronics and Telecommunications Trends, 2020, vol. 35, no. 4, p. 53.

    Google Scholar 

  2. Xu, W., Huang, Y., Zhou, R., et al., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 39, p. 44 281.

    Article  Google Scholar 

  3. Zinov’ev, N.N., Nikoghosyan, A.S., and Chamberlain, J.M., Proceedings of SPIE, 2006, vol. 6257, p. 62570P1.

  4. Liu, Y., Liu, H., Tang, M., et al., RSC Adv., 2019, vol. 9, p. 9354.

    ADS  Article  Google Scholar 

  5. Sokolniko, A.U., THz Identification for Defense and Security Purposes, 2013. https://doi.org/10.1142/8729

  6. Siegel, P.H., Int. J. High Speed Electronics and Systems, 2003, vol. 13, no. 2, p. 351.

    Article  Google Scholar 

  7. Woolard, D.L., Brown, R., Pepper, M., and Kemp, M., Proceedings of the IEEE, 2005, vol. 93, no. 10, p. 1722.

    Article  Google Scholar 

  8. Nikoghosyan, A.S., Quantum Electronics, 1988, vol. 15, p. 969.

    Google Scholar 

  9. Galot, G., Jamison, S.P., McGowan, R.W., and Grischkowsky, D., J. Opt. Soc. Am. B, 2000, vol. 17, no. 5, p. 851.

    ADS  Article  Google Scholar 

  10. Mendis, R. and Grischkowsky, D., J. Appl. Phys., 2000, vol. 88, p. 4449.

    ADS  Article  Google Scholar 

  11. Longfang, Ye., Zhang, Y., Xu, R., and Lin, W., Optics Express, 2011, vol. 19, no. 20, p. 18910.

    ADS  Article  Google Scholar 

  12. Mendis, R. and Grischkowsky, D., Opt. Lett., 2001, vol. 26, p. 846; IEEE Microw. Wirel.Compon. Lett., 2001, vol. 11, p. 444.

    Article  Google Scholar 

  13. T. Yoneyama, S. Nishida. IEEE Trans. MTT, 29(11), 1188 (1981).

    Article  Google Scholar 

  14. Nikoghosyan, A.S., Martirosyan, P.M., Hakhoumian, A.A., Chamberlain J.M., Dudley, R.A., and Zinov’ev, N.N., Int. J. Electromagnetic Waves and Electronic System, 2006, vol. 11, no. 4, p. 47.

    Google Scholar 

  15. Nikoghosyan, A.S., Martirosyan, R.M., Hakhoumian, A.A., Makaryan, A.H., Tadevosyan, V.R., Goltsman, G.N., and Antipov, S.V., J. Contemp. Phys., 2019, vol. 54, p. 97.

    Article  Google Scholar 

  16. Vitiello, M.S., Xu, J.H., Kumar, M., Beltram, F., Tredicucci, A., Mitrofanov, O., Beere, H.E., and Ritchie, D.A., Optics Express, 2011, vol. 19, no. 2, p. 1122.

    ADS  Article  Google Scholar 

  17. Cao, H., Linke, R., and Nahata, A., Optics Letters, 2004, vol. 29, no. 15, p. 1751.

    ADS  Article  Google Scholar 

  18. Amarasinghe, Y., Mendis, R., and Mittleman, D.M., Optics Express, 2020, vol. 28, no. 12, p. 17997.

    ADS  Article  Google Scholar 

  19. Li, H., Low, M.X., Ako, R.T., et al., Adv. Mater. Technol., 2020, vol. 5, no. 7, p. 2070039.

    Article  Google Scholar 

  20. Ye, L., Zhang, Y., Xu, R., and Lin, W., Optics Letters, 2011, vol. 19, no. 20, 18910.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Contract № 075-15-2021-970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nikoghosyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikoghosyan, A.S., Tadevosyan, V.R., Goltsman, G.N. et al. Critical Wavelength in the Metal Waveguide Partially Filled with Nonlinear Crystal. J. Contemp. Phys. 56, 366–370 (2021). https://doi.org/10.3103/S1068337221040113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221040113

Keywords:

  • terahertz waveguide
  • frequency bandwidth
  • waveguide modes
  • metallic rectangular waveguide partially filled with a nonlinear crystal