Skip to main content
Log in

Laser Beam Break-Up to Regular Optical Patterns and Refractive Structures Formation in a Photorefractive Lithium Niobate Crystal

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Break-up of a cw 632.8 nm wavelength laser beam to regular optical patterns during propagation through a photorefractive iron doped lithium niobate (LN:Fe) crystal is demonstrated. The power of the laser beam is varied in the range of 0.02–10 mW and 4 and 10 mm lengths LN:Fe crystals are used in the experiments. Time evolution of the laser beam profile at the output face of the LN:Fe crystal showed the splitting of a Gaussian beam into two lobes and then formation of 2D micrometric scale regular optical patterns. The input beam power increase essentially speeds-up the regular optical pattern formation. Regular optical patterns with two-fold rotation symmetry induct the quasi-crystalline photonic structures in LN:Fe crystal. A physical model to explain the experimental results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Collier, R.J., Buckhard, Ch.B., and Lin, L.H., Optical holography, New York: Academic Press, 1971.

    Google Scholar 

  2. Günter, P. and Huignard, J.P., Photorefractive Materials and Their Applications III, Springer Series in Optical Sciences, vol. 115, New York, 2007.

  3. Lai, N.D., Liang, W.P., Lin, J.H., Hsu, C.C., and Lin, C.H., Opt. Express, 2005, vol. 13, p. 9605.

    Article  ADS  Google Scholar 

  4. Lai, N.D., Lin, J.H., Huang, Y.Y., and Hsu, Ch.Ch., Opt. Express, 2006, vol. 22, p. 10746.

    Article  Google Scholar 

  5. Lee, W.-H., Computer generated holograms: Techniques and applications, Progress in Optics, North-Holland, XVI, ch. 3, p. 121, 1978.

  6. Badalyan, A., Hovsepyan, R., Mantashyan, P., Mekhitaryan, V., and Drampyan, R., Appl. Phys. B, 2014, vol. 116, p. 97.

    Article  ADS  Google Scholar 

  7. Chattrapiban, N., Rogers, E.A., Cofield, D., Hill, W.T., and Roy, R., Opt. Lett., 2003, vol. 28, p. 2183.

    Article  ADS  Google Scholar 

  8. Rose, P., Boguslawski, M., and Denz, C., New J. Physics, 2012, vol. 14, p. 033018.

    Article  ADS  Google Scholar 

  9. Badalyan, A., Hovsepyan, R., Mantashyan, P., Mekhitaryan, V., and Drampyan, R., Eur. Phys. J. D, 2014, vol. 68, p. 82.

    Article  ADS  Google Scholar 

  10. Trillo, S. and Torruellas, W.E., Spatial solitons, Berlin: Springer-Verlag, 2001.

    Book  Google Scholar 

  11. Kivshar, Yu.S. and Agrawal, G.P., Optical Solitons, New York: Academic Press, 2003.

    Google Scholar 

  12. Denz, C., Schwab, M., and Weilnau, C., Transverse-pattern Formation in Photorefractive Optics, Berlin: Springer, 2003.

    Book  Google Scholar 

  13. Rupp, R.A., Appl. Phys. A, 1992, vol. 55, p. 2.

    Article  ADS  Google Scholar 

  14. Khoo, I.C., Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, New York: Wiley, 1995.

    Google Scholar 

  15. Simoni, F, Nonlinear Optical Properties of Liquid Crystals, Singapore: World Scientific, 1997.

    Book  Google Scholar 

  16. Cheben, P. and Calvo, M.L., Appl. Phys. Lett., 2011, vol. 78, p. 1490.

    Article  ADS  Google Scholar 

  17. Del Monte, F., Cheben, P., Martinez-Matos, O., Rodrigo, J.A., and Calvo, M.L., Adv. Mater., 2006, vol. 18, p. 2014.

    Article  Google Scholar 

  18. Song, Q.W., Zhang, Ch.-P., and Talbot, P.J., Applied Optics, 1993, vol. 32, no. 35, p. 7266.

    Article  ADS  Google Scholar 

  19. Kostritskii, S.M. and Aillerie, M., J. Appl. Phys., 2012, vol. 111, p. 103504.

    Article  ADS  Google Scholar 

  20. Taya, M., Bashaw, M.C., Fejer, M.M., Segev, M., and Valley, G.C., Phys. Rev. A, 1995, vol. 52, p. 3095.

    Article  ADS  Google Scholar 

  21. Chauvet, M., J. Opt. Soc. Am. B, 2003, vol. 20, no. 12, p. 2515.

    Article  ADS  Google Scholar 

  22. Villarroel, J., Carnicero, J., Luedtke, F., Carrascosa, M., Garcia-Cabanes, A., Cabrera, J.M., Alcazar, A., and Ramiro, B., Opt. Express, 2010, vol. 18, p. 20852.

    Article  ADS  Google Scholar 

  23. Villarroel, J., Caballero-Caraero, O., Ramiro, B., Alcazar, A., Garcia-Cabanes, A., and Carrascosa. M., Opt. Materials, 2010, vol. 33, p. 103.

    Article  ADS  Google Scholar 

  24. Tsarukyan, L.M., Badalyan, A.M., Hovsepyan, R.K., and Drampyan, R.Kh., Proc. SPIE, 2019, vol. 11030, p. 1103017.

    Google Scholar 

  25. Tsarukyan, L., Badalyan, A., Devaux, F., Chauvet, M., and Drampyan, R., Opt. Commun., 2021, vol. 478, p. 126396.

    Article  Google Scholar 

  26. Devaux, F., Safioui, J., Chauvet, M., and Passier, R., Phys. Rev A, 2010, vol. 81, p. 013825.

    Article  ADS  Google Scholar 

  27. Glass, A.M., von der Linde, D., and Negran, T.J., Appl. Phys. Lett., 1974, vol. 25, p. 233.

    Article  ADS  Google Scholar 

  28. Chen, F.S., J. Appl. Phys., 1969, vol. 40, p. 389.

    Google Scholar 

  29. Jermann, F. and Otten, J., J. Opt. Soc. Am. B, 1993, vol. 10, p. 2085.

    Article  ADS  Google Scholar 

  30. Imlau, M., Badorreck, H., Merschjann, Ch., Appl. Phys. Rev., 2010, vol. 2, p. 040606.

  31. Tsarukyan, L., Hovsepyan, R., and Drampyan, R., Photonics and Nanostructures – Fundamentals and Applications, 2020, vol. 40, p. 100793.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. Mathieu Chauvet, Prof. Fabrice Devaux (Institute FEMTO-ST, University of Franche-Comte, Besancon, France) and Dr. Rafael Drampyan (Institute for Physical Research, National Academy of Sciences of Armenia) for many and fruitful discussions of experimental results.

Funding

This work was supported by International Science and Technology Center (ISTC) Grant, Project A-2130. The author is grateful to Dr. Edvard Kokanyan for providing the LN:Fe crystals in the framework ISTC A-2130 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Tsarukyan.

Additional information

Translated by L.M. Tsarukyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsarukyan, L.M. Laser Beam Break-Up to Regular Optical Patterns and Refractive Structures Formation in a Photorefractive Lithium Niobate Crystal. J. Contemp. Phys. 56, 184–191 (2021). https://doi.org/10.3103/S1068337221030208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221030208

Keywords:

Navigation