Skip to main content
Log in

Electrical Characteristics and Photo Response of the Heterostructure “Carbon Nanofilm on Silicon”

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The electrical characteristics and photoresponse of the “carbon nanofilm on silicon” heterostructure obtained by laser-pulsed deposition have been investigated. The thickness of the carbon nanofilm is selected from the condition of the maximum antireflection effect of the substrate. It was found that the obtained junction is rectifying with a rectifying coefficient of 35 at 1 V. The direct current-voltage characteristic from 0.1 V to 0.35 V is in satisfactory agreement with the expression J = J0exp(eUkT). An increase in voltage in the forward direction leads to the appearance of currents limited by the space charge (J = AU2). Linearization of the C–2U dependence indicates the sharpness of the impurity distribution in the space charge region. The mechanism of the photoresponse of the heterostructure is similar to the photoresponse of anisotype heterostructures with the ‘window’ effect. The long-wavelength edge (1.1 μm) of the photosensitivity is determined by the silicon substrate, and absorption in the carbon nanofilm leads to an additional expansion of the photosensitivity region. The heterostructure has uniform photosensitivity at the level 0.8 in the wavelength range of 0.55–1.1 µm. The short-wavelength tail reaches up to 0.4 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Milnes, A.G. and Feucht D.L., Heterojunctions and Metal-Semiconductor Junctions. New York, London: Academic press, 1972, 418 p.

    Google Scholar 

  2. Lunin, L.S., Lunina, M.L., Devitsky, O.V., and Sysoev, I.A., Semiconductors, 2017, vol. 51, no. 3, p. 387.

    Article  ADS  Google Scholar 

  3. Da Silva, D.S., Côrtes, A.D.S., Oliveira Jr., M.H., Motta, E.F., Viana, G.A., Mei, P.R., and Marques, F.C., Journal of Applied Physics, 2011, vol. 110, p. 043510.

    Article  ADS  Google Scholar 

  4. Hauert, R., Diamond and Related Materials, 2003, vol. 12, p. 583.

    Article  ADS  Google Scholar 

  5. Ferrari, A.C., Surface and Coatings Technology, 2004, vol. 180-181, p. 190.

    Article  Google Scholar 

  6. Avjyan, K.E., Matevosyan, L.A., Ohanyan, K.S., and Petrosyan, L.G., Instruments and Experimental Techniques, 2016, vol. 59, no.1, p. 60.

    Article  Google Scholar 

  7. Ma, Z.Q. and Liu, B.X., Solar Energy Materials & Solar Cells, 2001, vol. 69, p. 339.

    Article  Google Scholar 

  8. Gaponov, S.V., Gudkov, A.A., Kluenkov, E.V., and Strikovskij, M.D., Sov. Electronnaja Promishlennost, 1981, vol. 5-6, p. 110.

    Google Scholar 

  9. Miller, J.C., Laser Ablation – Principles and Applications, Berlin: Springer-Verlag, 1994.

  10. Eason, R., Pulsed Laser Deposition of Thin Films, John Wiley & Sons, 2006.

    Book  Google Scholar 

  11. Alexanian, A.G., Aramyan, N.S., Avjyan, K.E., Khachatryan, A.M., Grigoryan, R.P., and Yeremyan, A.S., Technology of PLD for photodetector materials, in: Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, edited by R.A. Potirailo and W.F. Maier, CRC/Taylor & Francis, 2006.

    Google Scholar 

  12. Nakano, S., Matsuoka, T., Kiyama, S., et al. Jpn. J. Appl. Phys., 1986, vol. 25, no. 12, p. 1936.

    Article  ADS  Google Scholar 

  13. Compaan, A.D., Matulionis, I., and Nakade, S., Opt. Lasers Eng., 2000, vol. 34, no. 1, p. 15.

    Article  Google Scholar 

  14. Bäuerle, D., Laser Processing and Chemistry. 3rd ed., Berlin: Springer, 2000.

    Book  Google Scholar 

  15. Miyajima, Y., Henley, S.J., Adamopoulos, G., Stolojan, V., Garcia-Caurel, E., Drévillon, B., Shannon, J.M., and Silva, S.R.P., Journal of Applied Phys., 2009, vol. 105, p. 073521.

    Article  ADS  Google Scholar 

  16. Yasuda, H., Matsuno, R., Koito, N., Hosoda, H., Tani, T., and Naya, M., Appl. Phys Lett., 2017, vol. 111, p. 231105.

    Article  ADS  Google Scholar 

  17. Fan, B., Nose, K., Diao, D., and Yoshida, T., Appl. Surface Science, 2013, vol. 273, p. 816.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Avjyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabagyan, G.A., Matevosyan, L.A. & Avjyan, K.E. Electrical Characteristics and Photo Response of the Heterostructure “Carbon Nanofilm on Silicon”. J. Contemp. Phys. 56, 247–253 (2021). https://doi.org/10.3103/S1068337221030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221030099

Keywords:

Navigation