Skip to main content
Log in

Remote Optical Temperature Sensing Using a Flat-Parallel Dielectric Wafer

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

It is demonstrated that reflection of a continuous-wave single-frequency laser radiation from a thick flat-parallel glass wafer can be used for precise remote measurement of temperature. Such measurement relies on the low-finesse Fabry-Pérot nature of the dielectric wafer, whose optical thickness depends on temperature due to two characteristics of the dielectric material: the linear expansion coefficient and the thermo-optic coefficient. For the used glass wafer with a refractive index of 1.5183 and a thickness of 15.75 mm, the temperature distance between adjacent interference peaks was 1.4825°C, which made it possible to measure the temperature with a mean accuracy of 0.005°C. Performance aspects of the proposed temperature sensor and its practical applicability are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zhao, Y., Wang, X., Zhang, Y., Li, Y., and Yao, X., J. Alloys Compd., 2020, vol. 817, p. 152691.

    Article  Google Scholar 

  2. Demirkhanyan, H.G., Demirkhanyan, G.G., and Kokanyan, E.P., J. Contemp. Phys., 2017, vol. 52, p. 381.

    Article  Google Scholar 

  3. Chen, C.W., Lin, W.C., Liao, L.S., Lin, Z.H., Chiang, H.P., Leung, P.T., Sijercic, E., Tse, W.S., Appl. Opt., 2007, vol. 46, p. 5347.

    Article  ADS  Google Scholar 

  4. Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., and Wrachtrup, J., Nano Lett., 2013, vol. 13, p. 2738.

    Article  ADS  Google Scholar 

  5. Roriz, P., Silva, S., Frazão, O., and Novais, S., Sensors, 2020, vol. 20, p. 2113.

    Article  ADS  Google Scholar 

  6. Mikolajek, M., Martinek, R., Koziorek, J., Hejduk, S., Vitasek, J., Vanderka, A., Poboril, R., Vasinek, V., and Hercik, R., J. Sens., 2020, vol. 2020, p. 8831332.

    Article  Google Scholar 

  7. Jahier, E., Guéna, J., Jacquier, Ph., Lintz, M., Papoyan, A.V., and Bouchiat, M.A., Appl. Phys. B, 2000, vol. 71, p. 561.

    Article  ADS  Google Scholar 

  8. Yeganyan, A.V., Kuzanyan, A.S., and Stathopoulos, V.N., J. Contemp. Phys., 2016, vol. 51, p. 61.

    Article  Google Scholar 

  9. Yeganyan, A.V., Kokanyan, E.P., Hovhannesyan, K.L., Butaeva, T.I., and Hovsepyan, L.E., J. Contemp. Phys., 2018, vol. 53, p. 152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Harutyunyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.A. Harutyunyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, V.A., Papoyan, A.V. Remote Optical Temperature Sensing Using a Flat-Parallel Dielectric Wafer. J. Contemp. Phys. 56, 192–195 (2021). https://doi.org/10.3103/S106833722103004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833722103004X

Keywords:

Navigation