Skip to main content
Log in

The Polarization of Laser Generation from the Cholesteric Liquid Crystal–Dye-Doped Polymer Layer–Cholesteric Liquid Crystal System

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The state of polarization is an important feature of any laser emission. The polarization of light is important for the processing of laser beams in polarization-dependent devices such as interferometers, optical amplifiers, optical modulators, etc. In this paper, the polarization of lasing generated from the three-layered cholesteric liquid crystal–dye-doped polymer layer–cholesteric liquid crystal system was investigated experimentally. It was shown that the polarization state of lasing peaks generated from the above-mentioned three-layered system is circular. The polarization of lasing from the dye-doped cholesteric liquid crystalline system is verified experimentally which is also circular. It was shown that the polarization of the lasing from the cholesteric liquid crystal with isotropic defect layer inside coincides with the polarization of lasing from the dye-doped cholesteric liquid crystalline system. For both cases, laser emission has left-hand circular polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Khoo, I.-Ch., Liquid Crystals. Wiley, 2007.

    Book  Google Scholar 

  2. Rafayelyan, M.S., Gharagulyan, H., Sarukhanyan, T.M., Gevorgyan, A.H., Hakobyan, R.S., and Alaverdyan, R.B., Liquid Crystals, 2019, vol. 46, no. 7, p. 1079.

    Article  Google Scholar 

  3. Kopp, V.I., Zhang, Zh.-Q., and Genack, A.Z., Progress in Quantum Electronics, 2003, vol. 27, no. 6, p. 369.

    Article  ADS  Google Scholar 

  4. Chanishvili, A., Chilaya, G., and Petriashvili, G., Appl. Phys. Letters, 2003, vol. 83, no. 26, p. 5353.

    Article  ADS  Google Scholar 

  5. Furumi, S., Yokoyama, Sh., Otomo, A., and Mishka, Sh., Appl. Phys. Letters, 2004, vol. 84, no. 14, p. 2491.

    Article  ADS  Google Scholar 

  6. Belyakov, V.A., Gevorgian, A.A., Eritsian, O.S., and Shipov, N.V., Sov. Phys. Tech. Phys., 1987, vol. 32, no. 7, p. 843.

    Google Scholar 

  7. Belyakov, V.A., Mol. Cryst. Liq. Cryst., 2006, vol 453, no. 1, p. 43.

    Article  Google Scholar 

  8. Gevorgyan, A.H., Oganesyan, K.B., Harutyunyan, E.M., and Arutyunyan, S.O., Opt. Commun., 2010, vol. 283, no. 19, p. 3707.

    Article  ADS  Google Scholar 

  9. Huang, Y., Zhou, Y., Doyle, Ch., and Wu, Sh.-Ts., Optics Express, 2006, vol. 14, no. 3, p. 1236.

    Article  ADS  Google Scholar 

  10. Dadalyan, T., Alaverdyan, R., Nys, I., Ninoyan, Zh., Willekens, O., Beeckman, J., and Neyts, K., Liquid Crystals, 2016, vol. 44, no. 2, p. 372.

    Google Scholar 

  11. Jeong, M.-Y. and Wu, J.W., Opt. Express, 2010, vol. 18, no. 23, p. 24221.

    Article  ADS  Google Scholar 

  12. Dadalyan, T., Ninoyan, Zh., Nys, I., Alaverdyan, R., Beeckman, J., and Neyts, K., Liquid Crystals, 2018, vol. 45, no. 9, p. 1272.

    Article  Google Scholar 

  13. Gevorgyan, A.H. and Harutyunyan, M.Z., Phys. Rev. E, 2007, vol. 76, no. 3, p. 031701.

    Article  ADS  Google Scholar 

  14. Gevorgyan, A.H. and Harutyunyan, M.Z., J. Mod. Opt., 2009, vol. 56, no. 10, p. 1163.

    Article  ADS  Google Scholar 

  15. Alaverdyan, R.B., Allakhverdyan, K.R., Gevorgyan, A.H., Chilingaryan, A.D., and Chilingaryan, Yu.S., Technical Physics, 2010, vol. 55, no. 9, p. 1317.

    Article  ADS  Google Scholar 

  16. Gevorgyan, A.H., Opt. Commun., 2008, vol. 281, no. 20, p. 5097.

    Article  ADS  Google Scholar 

  17. Gevorgyan, A.H., Optik, 2018, vol. 154, p. 656.

    Article  ADS  Google Scholar 

  18. Alaverdyan, R.B., Gevorgyan, A.H., Gharagulyan, H., and Grigoryan, H., Mol. Cryst. and Liq. Cryst., 2012, vol. 559, no. 1, p. 23.

    Article  Google Scholar 

  19. Gharagulyan, H., J. Contemp. Phys., 2015, vol. 50, p. 247.

    Article  Google Scholar 

  20. Song, M.H., Shina, Ki.-Ch., Parka, B., Takanishia, Y., Ishikawaa, K., Watanabe, J., Nishimura, S., Toyooka, T., Zhu, Zh., Swager, T.M., and Takezoe, H., Science and Technology of Advanced Materials, 2004, vol. 5, no. 4, p. 437.

    Article  ADS  Google Scholar 

  21. Gevorgyan, A.H., Oganesyan, K.B., Karapetyan, R.V., and Rafayelyan, M.S., Laser Phys. Lett., 2013, vol. 10, no. 12, p. 125802.

    Article  ADS  Google Scholar 

  22. Gevorgyan, A.H., Oganesyan, K.B., Vardanyan, G.A., and Matinyan, G.K., Laser Phys., 2014, vol. 24, no. 11, p. 115801.

    Article  ADS  Google Scholar 

  23. Yeh, H.-Ch. and Wun, K.-Si., Laser Phys. Lett., 2017, vol. 14, no. 8, p. 086202.

    Article  ADS  Google Scholar 

  24. Ali, T., Lin, J.-De., Snow, B., Wang, X., Elston, S.J., and S.M. Morris. Adv. Optical Mater., 2020, vol. 8, no. 8, p. 1901891.

    Article  Google Scholar 

  25. Park, B., Kim, M., Kim, S.W., and Kim, I.T., Optics Express, 2009, vol. 17, p. 12323.

    Article  ADS  Google Scholar 

  26. Zhou, Y., Jang, E.-E.A., Huang, Y., and Wu, Sh.-T., Optics Express, 2007, vol. 15, p. 3470.

    Article  ADS  Google Scholar 

  27. Furumi, S., The Chemical Record, 2010, vol. 10, no. 6, p. 394.

    Google Scholar 

  28. Blinov, L.M., Structure and properties of liquid crystals. Dordrecht: Springer, 2011.

    Book  Google Scholar 

  29. Yeh, P. and Gu, C., Optics of liquid crystal displays. New York: John Willey & Sons, 1999.

    Google Scholar 

  30. Rafayelyan, M. and Brasselet, E., Opt. Lett., 2016, vol. 41, no. 17, p. 3972.

    Article  ADS  Google Scholar 

  31. Gharagulyan, H., Sarukhanyan, T.M., Ninoyan, A.V., Gevorgyan, A.H., and Alaverdyan, R.B., Optics and Spectroscopy, 2020, vol. 128, no. 10, p. 1533.

    Article  Google Scholar 

  32. Sarukhanyan, T.M., Gharagulyan, H., Sargsyan, M.L., Grigoryan, H., Gevorgyan, A.H., Alaverdyan, R.B., and Hakobyan, R.S., Mol. Cryst. & Liq. Cryst., 2020, vol. 713, no. 1, p. 15.

Download references

ACKNOWLEDGMENTS

The author expresses her gratitude to her supervisor prof. R.B. Alaverdyan and prof. A.H. Gevorgyan for a discussion of the results of the work and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sarukhanyan.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarukhanyan, T.M. The Polarization of Laser Generation from the Cholesteric Liquid Crystal–Dye-Doped Polymer Layer–Cholesteric Liquid Crystal System. J. Contemp. Phys. 56, 103–108 (2021). https://doi.org/10.3103/S1068337221020146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221020146

Keywords:

Navigation