Skip to main content
Log in

Geometric Features and Numerical Analysis of InAsSbP Composition Micro- and Nanostructures Shape Transformation at Nucleation from Liquid Phase

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Results of the characterization and numerical analysis of InAsSbP composition strain-induced micro- and nanostructures shape transition are presented. Nucleation is performed from In-As-Sb-P quaternary composition liquid phase in Stranski–Krastanow growth mode. Geometric features and the shape transformation chronology of truncated pyramidal islands, lens-shape and pyramidal quantum dots (QDs) are under consideration, which opens up new possibilities at nanoscale engineering and nanoarchitecture of several types of nanostructures. High-resolution scanning electron (HR-SEM) and transmission electron (TEM) microscopes are used for micro- and nanostructures characterization. We show that as the islands volume decreases, the following succession of shape transitions are detected: truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted ‘pre-pyramid’, which gradually evolve to hemisphere and then again to pyramidal QD but with higher facet indexes. Critical sizes of islands shape transformation from ‘pre-pyramid’ to hemisphere (500–550 nm) and then from lens-shape again to pyramidal QDs (5–7 nm) are experimentally detected and theoretically evaluated. It is shown that theoretically calculated values coincide with experimentally obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum Dot Heterostructures, New York: Wiley, 1998.

    Google Scholar 

  2. Bhattacharya, P., Su, X.H., Chakrabarti, S., et al., Appl. Phys. Lett., 2005, vol. 86, p. 191106.

    Article  ADS  Google Scholar 

  3. Rogalski, A., Acta Phys. Pol. A, 2009, vol. 116, p. 389.

    Article  ADS  Google Scholar 

  4. Aroutiounian, V.M., Petrosian, S.G., Khachatryan, A., and Touryan, K., J. Appl. Phys., 2001, vol. 89, p. 2268.

    Article  ADS  Google Scholar 

  5. Rudin, A.M., Guo, L.J., et al., Appl. Phys. Lett., 1998, vol. 73, p. 3429.

    Article  ADS  Google Scholar 

  6. Marquardt, O., Hickel, T., Neugebauer, J., Gambaryan, K.M., and Aroutiounian, V.M., J. Appl. Phys., 2011, vol. 110, p. 043708.

    Article  ADS  Google Scholar 

  7. Gambaryan, K.M., Nanoscale Res. Lett., 2010, vol. 5, p. 587.

    Article  ADS  Google Scholar 

  8. Aroutiounian, V.M., Gambaryan, K.M., and Soukiassian, P.G., Surface Science, 2010, vol. 604, p. 1127.

    Article  ADS  Google Scholar 

  9. Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett., 1997, vol. 71, p. 3691.

    Article  ADS  Google Scholar 

  10. Gambaryan, K.M., Aroutiounian, V.M., and Harutyunyan, V.G., Infrared Phys. & Tech., 2011, vol. 54, p. 114.

    Article  ADS  Google Scholar 

  11. Stranski, I. and Krastanow, L., Math.-Naturwiss., 1938, vol. 146, p. 797.

    Google Scholar 

  12. Gambaryan, K.M., Aroutiounian, V.M., Boeck, T., and Schulze, M., Phys. Status Solidi C, 2009, vol. 6, p. 1456.

    Article  ADS  Google Scholar 

  13. Daruka, I., Tersoff, J., and Barabasi, A.-L., Phys. Rev. Lett., 1999, vol. 82, p. 2753.

    Article  ADS  Google Scholar 

  14. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett., 1994, vol. 72, p. 3570.

    Article  ADS  Google Scholar 

  15. Zinke-Allmang, M., Feldman, L.C., and Grabow, M.H., Surf. Sci. Rep., 1992, vol. 16, p. 377.

    Article  ADS  Google Scholar 

  16. Ross, F.M., Tersoff, J., and Tromp, R.M., Phys. Rev. Lett., 1998, vol. 80, p. 984.

    Article  ADS  Google Scholar 

  17. Tersoff, J., Spencer, B.J., Rastelli, A., and von Kanel, H., Phys. Rev. Lett., 2002, vol. 89, p. 196104.

    Article  ADS  Google Scholar 

  18. Liu, N., Tersoff, J., Baklenov, O., Holmes, Jr., A.L., and Shih, C.K., Phys. Rev. Lett., 2000, vol. 84, p. 334.

    Article  ADS  Google Scholar 

  19. Gambaryan, K.M., Aroutiounian, V.M., Boeck, T., et al., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 162004.

    Article  ADS  Google Scholar 

  20. Tersoff, J. and Tromp, R.M., Phys. Rev. Lett., 1993, vol. 70, p. 2782.

    Article  ADS  Google Scholar 

  21. Safonov, K.L., Dubrovskii, V.G., Sibirev, N.V., and Trushin, Yu.V., Technical Physics Letters, 2007, vol. 33, p. 490.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank to Dr. T. Boeck from Institute for Crystal Growth (IKZ), Berlin, Germany and Dr. A. Trampert from Paul Drude Institute for Solid State Electronics (PDI), Berlin, Germany for HR-SEM and TEM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Gambaryan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by K.M. Gambaryan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambaryan, K.M., Aroutiounian, V.M. Geometric Features and Numerical Analysis of InAsSbP Composition Micro- and Nanostructures Shape Transformation at Nucleation from Liquid Phase. J. Contemp. Phys. 56, 133–138 (2021). https://doi.org/10.3103/S1068337221020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221020067

Keywords:

Navigation