Microwave Synthesis of ZnO/Ag Nanocomposite


A microwave (MW) method has been developed for the preparation of a ZnO/Ag nanocomposite using methods of chemical precipitation and decomposition of thermally unstable compounds. Chemical co-deposition is a simple and efficient method in comparison with other methods of obtaining a ZnO/Ag nanocomposite. The characteristics of the synthesized product were determined by differential thermal analysis (DTA), X-ray phase analysis (XRA), and scanning electron microscopy (SEM). The studies carried out show the effectiveness of MW treatment in the production of ZnO/Ag nanocomposites.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S.B., Nano Letters, 2011, vol. 11, p. 1111.

    ADS  Article  Google Scholar 

  2. 2

    Esswein, A.J. and Nocera, D.G., Chem. Rev., 2007, vol. 107, p. 4022.

    Article  Google Scholar 

  3. 3

    Evstafieva, M.V., Redkin, A.N., and Yakimov, E.E., Nano- and Microsystem Technology, 2016, vol. 18, p. 729.

  4. 4

    Ryzhova, M.V., Redkin, A.N., and Yakimov, E.E., Int. scientific and technical. conf. “Technologies of micro- and nanoelectronics in micro- and nanosystem technology”, 2016, Conference Proceedings, p. 231.

  5. 5

    Burylin, E.I. et al., ZhTF, 2007, vol. 77, no. 5, p. 130.

    Google Scholar 

  6. 6

    Shabanov, N.A., Khimiya i tekhnologiya nanodisperstnykh oksidov (Chemistry and technology of nanodispersed oxides), Moscow: Akademkniga PH, 2007.

  7. 7

    Briois, V. and Giorgetti, C., J. Sol–Gel Sci. Techn., 2006, vol. 39, p. 25.

    Article  Google Scholar 

  8. 8

    Aimable, A., Buscaglia, M.T., Buscaglia, V., and Bowen, P., J. European Ceramic Society, 2010, vol. 30, p. 591.

    Article  Google Scholar 

  9. 9

    Xia, Y., Xiong, Y., Lim, B., and Skrabalak, S.E., Angew. Chem. Int. Ed., 2009, vol. 23, p. 60.

    Article  Google Scholar 

  10. 10

    Hovsepyan, R.K., Aghamalyan, N.R., Kafadaryan, E.A. et al., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 358.

    Google Scholar 

  11. 11

    Meng, C., Ying, L., Han, J.-T., Zhang, J.-Y., Li, Z.-Y., and Qian, D.-L., J. Fudan Universiry, 2006, vol. 45, p. 34.

    Google Scholar 

  12. 12

    Thostenson, E.T. and Chou, T.W., Composites Part A: Applied Science and Manufacturing, 1999, vol. 30, p. 1055.

    Article  Google Scholar 

  13. 13

    Brittany. H., Microwave Synthesis Chemistry at the Speed of Light, USA, CEM Publishing, 2002.

  14. 14

    Rakhmankulov, D.L., Bikbulatov, I.Kh., Ulaev, N.S., and Shavshukov, S.Yu., Mikrovolnovoye izlucheniye i intensifikatsiya khimicheskikh protsessov (Microwave Radiation and Intensification of Chemical Processes), Moscow: Chemistry PH, 2003.

  15. 15

    Nikolaeva, N.S., Ivanov, V.V., and Shubin, A.A., J. Siberian Federal University. Chemistry, 2010, vol. 2, p, 153.

Download references

Author information



Corresponding author

Correspondence to V. V. Bagramyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A.A., Bagramyan, V.V., Knyazyan, N.B. et al. Microwave Synthesis of ZnO/Ag Nanocomposite. J. Contemp. Phys. 55, 360–364 (2020). https://doi.org/10.3103/S1068337220040179

Download citation


  • microwave treatment
  • zinc oxide
  • silver
  • chemical precipitation
  • nanocomposite