CdTe–ZnTe–HgTe Material System: Solid Solutions Miscibility Analysis

Abstract

The pseudobinary HgTe–CdTe, ZnTe–CdTe and HgTe–ZnTe systems were studied and Gibbs energy of mixing were determined at 400–1000 K temperature range. Miscibility gap analysis for CdZnHgTe quaternary material system is also performed by the Gibbs free energy calculations. Quantitative explorations show that there is no immiscibility gap for CdTe–HgTe material system in the mentioned above temperature range. In spite of that system, for the Cd1 – xZnxTe solid solutions, an immiscibility gap within x = 0.4–0.6 at T = 400 K already revealed. For the ZnTe–HgTe material system the situation is more complicated. Here, mutual incorporation of components is energetically favorable only up to impurity levels and an immiscibility gap occurs at entire compositions range starting from T = 800 K temperature and below. In addition, our calculations show that for the CdZnHgTe quaternary material system the immiscibility gap exists at the mentioned above temperature range and decreases at temperature increasing. Presented results can be useful at the growth of multicomponent bulk crystals, epitaxial thin films and nanostructures based on CdZnHgTe material system.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Kasap, S. and Capper, P. (Eds.). Wide Bandgap II–VI Semiconductors: Growth and Properties. Springer Handbook of Electronics and Photonics Materials. Part B, 2007, p. 1.

    Google Scholar 

  2. 2

    Potlog, T., Maticiuc, N., Mirzac, A., Dumitriu, P., and Scortescu, D., CAS 2012 (International Semiconductor Conference), Sinaia, 2012, p. 321. https://doi.org/10.1109/SMICND.2012.6400772.

  3. 3

    Duz, I., Erdem, S., Ozdemir Kart, S., and Kuzucu, V., Archives of Materials Science and Engineering, 2016, vol. 79, p. 5.

    Article  Google Scholar 

  4. 4

    Wojtowicz, T., Janik, E. et al, Journal of the Korean Phys. Society, 2008, vol. 53, no. 5, p. 3055.

    ADS  Article  Google Scholar 

  5. 5

    Rusu, G.I., Prepelita, P., Apetroaei, N. and Popa, G., Journal of Optoel. and Advan. Materials, 2005, vol. l7, no. 2, p. 829.

  6. 6

    Seyam, M.A.M. and Elfalaky, A., Vacuum, 2000, vol. 57, no. 1, p. 31.

    Article  Google Scholar 

  7. 7

    Su, C.-H., Sha, Y.-G., Mazuruk, K., and Lehoczky, S.L., J. Appl. Phys., 1996, vol. 80, no. 1, p. 137.

    ADS  Article  Google Scholar 

  8. 8

    Alikhanian, A.S., Guskov, V.N., Natarovskii, A.M., and Kovalenko, V.V., Inorganic Materials, 2003, vol. 39, no. 3, p. 234.

    Article  Google Scholar 

  9. 9

    Lawson, W.D., Nielson, S., Putley, E.H., and Young, A.S., J. Phys. Chem. Solids, 1959, vol. 9, p. 325.

    ADS  Article  Google Scholar 

  10. 10

    Rogalski, A., Optoelectronics Review, 2010, vol. 18, no. 3, p. 284.

    ADS  Google Scholar 

  11. 11

    Ihsiu, H. and Stringfellow, G.B., Appl. Phys. Lett., 1996, vol. 69, no. 18, p. 2701.

    ADS  Article  Google Scholar 

  12. 12

    Emeljanova, O.S., Strelchenko, S.S., and Usacheva, M.P., Semiconductors, 2009, vol. 43, no. 2, p. 135.

    ADS  Article  Google Scholar 

  13. 13

    Deibuk, V.G., Semiconductors, 2003, vol. 37, no.10, p. 1151.

    ADS  Article  Google Scholar 

  14. 14

    Vigdorovich, E.N. and Sveshnikov, Yu.N., Inorganic Materials, 2000, vol. 36, no. 5, p. 465.

    Article  Google Scholar 

  15. 15

    Wakahara, A., Tokuda, T., Dang, X.-Z., Noda, S., and Sasaki, A., Appl. Phys. Lett., 1997, vol. 71, p. 906.

    ADS  Article  Google Scholar 

  16. 16

    Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, USA, San Diego: Elsevier, 1999.

    Google Scholar 

Download references

Funding

The authors wish to thank the State Committee of Science of Armenia for financial support in the framework of the grant no. 18T–2J016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. M. Gambaryan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by K.M. Gambaryan

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gambaryan, K.M., Simonyan, A.K., Aroutiounian, V.M. et al. CdTe–ZnTe–HgTe Material System: Solid Solutions Miscibility Analysis. J. Contemp. Phys. 55, 334–338 (2020). https://doi.org/10.3103/S1068337220040088

Download citation

Keywords:

  • II-VI compound semiconductors
  • CdZnHgTe
  • Gibbs free energy
  • miscibility analysis