Skip to main content
Log in

First-Principles Study of the Interaction of H2O2 with the SnO2 (110) Surface

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The interaction of H2O2 with the stoichiometric surface of (110) SnO2 was studied by first principle methods. Relaxed geometries, adsorption energies, and charge transfer between the molecule and the surface were calculated for several starting configurations of the H2O2 molecule and the SnO2 surface. The most probable adsorption sites and their optimized geometries are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Satterfield, C.N., Kavanagh, G.M., and Resnick, H., Ind. Eng. Chem., 1951, vol. 43, p. 2507.

    Article  Google Scholar 

  2. Watt, B.E., Proudfoot, A.T., and Vale, J.A., Toxicol. Rev., 2004, vol. 23, p. 51.

    Article  Google Scholar 

  3. Stolarek, R., Bialasiewicz, P., Krol, M., and Nowak, D., Clin. Chim. Acta, 2010, vol. 411, p. 1849.

    Article  Google Scholar 

  4. Aroutiounian, V., Arakelyan, V., Aleksanyan, M., Gohar, S., Kacer, P., Picha, P., Kovarik, J., Pekarek, J., and Joost, B., J. Sens. Sens. Syst., 2018, vol. 7, p. 281.

    Article  Google Scholar 

  5. Adamyan, Z.N., Sayunts, A.G., Khachaturyan, E.A., Araqelyan, V.M., Aroutiounian, V.M., and Joost, B., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 57.

    Google Scholar 

  6. Batzill, M., Sensors, 2006, vol. 6, p. 1345.

    Article  Google Scholar 

  7. Gopel, W., Prog. Surf. Sci., 1985, vol. 20, p. 9.

    Article  ADS  Google Scholar 

  8. Watson, J., Sensors and Actuators, 1984, vol. 5, p. 29.

    Article  Google Scholar 

  9. Batzill, M. and Diebold, U., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 2307.

    Article  Google Scholar 

  10. Jarzebski, Z.M., J. Electrochem. Soc., 1976, vol. 123, p. 299C.

    Article  ADS  Google Scholar 

  11. Lousada, C.M., Johansson, A.J., Brinck, T., and Jonsson, M., J. Phys. Chem. C, 2012, vol. 116, p. 9533.

    Article  Google Scholar 

  12. Soltani, A., Peyghan, A.A., and Bagheri, Z., Phys. E Low-Dimensional Syst. Nanostructures, 2013, vol. 48, p. 176.

    Article  ADS  Google Scholar 

  13. Plauck, A., Stangland, E.E., Dumesic, J.A., and Mavrikakis, M., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, p. E1973.

    Article  ADS  Google Scholar 

  14. Flätgen, G., Wasle, S., Lübke, M., Eickes, C., Radhakrishnan, G., Doblhofer, K., and Ertl, G., Electrochim. Acta, 1999, vol. 44, p. 4499.

    Article  Google Scholar 

  15. Batzill, M., Katsiev, K., and Diebold, U., Surf. Sci., 2003, vol. 529, p. 295.

    Article  ADS  Google Scholar 

  16. Zakaryan, H. and Aroutiounian, V., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 227.

    Google Scholar 

  17. Hunanyan, A.A., Aghamalyan, M.A., Aroutiounian, V.M., and Zakaryan, H.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 282.

    Google Scholar 

  18. Hohenberg, P. and Kohn, W., Phys. Rev., 1964, vol. 136, p. B864.

    Article  ADS  Google Scholar 

  19. Kohn, W. and Sham, L.J., Phys. Rev., 1965, vol. 140, p. A1133.

    Article  ADS  Google Scholar 

  20. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys. Condens. Matter, 2009, vol. 21, no. 39, p. 395502.

    Article  Google Scholar 

  21. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., and Baroni, S., J. Phys. Condens. Matter, 2017, vol. 29, p. 465901.

    Article  Google Scholar 

  22. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  ADS  Google Scholar 

  23. Joubert, D., Phys. Rev. B - Condens. Matter Mater. Phys., 1999, vol. 59, p. 1758.

    Article  ADS  Google Scholar 

  24. Monkhorst, H.J., and Pack, J.D., Phys. Rev. B, 1976, vol. 13, p. 5188.

    Article  ADS  MathSciNet  Google Scholar 

  25. Bader, R.F.W., Atoms in Molecules: A Quantum Theory,Oxford University Press, 1990.

    Google Scholar 

  26. Henkelman, G., Arnaldsson, A., and Jónsson, H., Comput. Mater. Sci., 2006, vol. 36, p. 354.

    Article  Google Scholar 

  27. Batzill, M. and Diebold, U., Prog. Surf. Sci., 2005, vol. 79, p. 47.

    Article  ADS  Google Scholar 

  28. Diebold, U., Surf. Sci. Rep., 2003, vol. 48, p. 53.

    Article  ADS  Google Scholar 

  29. Schierbaum, K.D., Kirner, U.K., Geiger, J.F., and Göpel, W., Sensors Actuators B. Chem., 1991, vol. 4, p. 87.

    Article  Google Scholar 

  30. Schierbaum, K.D., Wei-Xing, X., and Göpel, W., Berichte der Bunsengesellschaft für Phys.Chemie, 1993, vol. 97, p. 363.

    Google Scholar 

  31. Horrillo, M.C., Gutiérrez, J., Arés, L., Robla, J.I., Sayago, I., Getino, J., and Agapito, J.A., Sensors Actuators B. Chem., 1995, vol. 25, p. 507.

    Article  Google Scholar 

  32. Yamazoe, N., Kurokawa, Y., and Seiyama, T., Sensors and Actuators, 1983, vol. 4, p. 283.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are also grateful to the Institute of Informatics and Automation Problems of the NAS of RA (http://cloud.asnet.am/), the EaPEC2019 project and the ‘Jülich supercomputing center’ for the computer resources provided for the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aghamalyan.

Ethics declarations

FUNDING

This work was carried out within the framework of the 19YR-2K002 (Young Scientists 2019-2021) program of thematic financing of the Scientific Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Additional information

Translated by V. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamalyan, M.A., Hunanyan, A.A., Aroutiounian, V.M. et al. First-Principles Study of the Interaction of H2O2 with the SnO2 (110) Surface. J. Contemp. Phys. 55, 235–239 (2020). https://doi.org/10.3103/S1068337220030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220030020

Keywords:

Navigation