Advertisement

Modified Faraday Rotation Method for Studying Cesium Atomic Lines in Strong Magnetic Fields

  • A. Sargsyan
  • A. Tonoyan
  • G. Hakhumyan
  • A. AmiryanEmail author
  • P. Todorov
  • S. Cartaleva
  • D. Sarkisyan
Article
  • 10 Downloads

Abstract

A modified Faraday rotation method is developed using a nanocell filled with cesium vapor. Formed atomic lines have a spectral width 1.5–2 times narrower than those obtained by the Faraday rotation method. In magnetic fields of B = 5000–7000 G, all the atomic transitions of the Cs D2 lines, formed in the spectra, are spectrally resolved and identified. In particular, transitions that are forbidden at B = 0 G have been investigated, however, at certain values of the magnetic field, there is a gigantic increase in their probabilities. It is shown that the modified Faraday rotation method is convenient and efficient for high-resolution spectroscopy for Cs atoms. There is а good agreement between the experimental results and calculated values. The practical applications are also noted.

Keywords

alkali atoms Faraday rotation nanocell strong magnetic field atomic transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Budker, D., Gawlik, W., Kimball, D., Rochester, S.R., Yaschuk, V.V., and Weis, A., Rev. Mod. Phys., 2002, vol. 74, p. 1153.ADSCrossRefGoogle Scholar
  2. 2.
    Auzinsh, M., Budker, D., and Rochester, S.M., Optically Polarized Atoms: Understanding Light_Atom Interactions, Oxford: Oxford Univ. Press, 2010.zbMATHGoogle Scholar
  3. 3.
    Wang, Y., Zhang, X., Wang, D., Tao, Z., Zhuang, W., and Chen, J., Opt. Express, 2012, vol. 20, p. 25817.ADSCrossRefGoogle Scholar
  4. 4.
    Zielińska, J.A., Beduini, F.A., Godbout, N., and Mitchell, M.W., Opt. Lett., 2012, vol. 37, p. 524.ADSCrossRefGoogle Scholar
  5. 5.
    Zentile, M.A., Whiting, D.J., Keaveney, J., Adams, Ch.S., and Hughes, I.G., Opt. Lett., 2015, vol. 40, p. 2000.ADSCrossRefGoogle Scholar
  6. 6.
    Zentile, M.A, Andrews, R., L. Weller, S. Knappe, Ch.S. Adams, I.G. Hughes. J. Phys. B: At. Mol. Opt. Phys., 47, 075005 (2014).Google Scholar
  7. 7.
    Olsen, B.A., Patton, B., Jau, Y.Y., and Happer, W., Phys. Rev. A, 2011, vol. 84, p. 063410.ADSCrossRefGoogle Scholar
  8. 8.
    Zentile, M.A., Keaveney, J., Weller, L., Whiting, D.J., Adams, C.S., and Hughes, I.G., Comput. Phys. Commun., 2015, vol. 189, p. 162.ADSCrossRefGoogle Scholar
  9. 9.
    Sargsyan, A., Hakhumyan, G., Mirzoyan, R., and Sarkisyan, D., JETP Lett., 2013, vol. 98, p. 441.ADSCrossRefGoogle Scholar
  10. 10.
    Sarkisyan, D. and Papoyan, A., New Trends in Quantum Coherence and Nonlinear Optics (Horizons in World Physics, vol. 263), Ed.: R. Drampyan, Nova Science Publishers, Chapter 3, pp.85–124 (2009).Google Scholar
  11. 11.
    Tremblay, P., Michaud, A., Levesque, M., Thériault, S., Breton, M., Beaubien, J., and Cyr, N., Phys. Rev. A, 42, 2766 (1990).Google Scholar
  12. 12.
    Sargsyan, A., Tonoyan, A., Hakhumyan, G., Papoyan, A., Mariotti, E., and Sarkisyan, D., Laser Phys. Lett., 2014, vol. 11, p. 055701.ADSCrossRefGoogle Scholar
  13. 13.
    Klinger, E., Sargsyan, A., Tonoyan, A., Hakhumyan, G., Papoyan, A., Leroy, C., and Sarkisyan, D., Europhys. Journ. D, 2017, vol. 71, p. 216.ADSGoogle Scholar
  14. 14.
    Sargsyan, A., Tonoyan, A., Hakhumyan, G., and Sarkisyan, D., JETP Lett., 2017, vol. 106, p. 700.ADSCrossRefGoogle Scholar
  15. 15.
    Tonoyan, A., Sargsyan, A., Klinger, E., Hakhumyan, G., Leroy, C., Auzinsh, M., Papoyan, A., and Sarkisyan, D., EuroPhys. Lett., 2018, vol. 121, p. 53001.ADSCrossRefGoogle Scholar
  16. 16.
    Sargsyan, A., Hakhumyan, G., Papoyan, A., and Sarkisyan, D., Jetp Lett., 2015, vol. 101, p. 303.ADSCrossRefGoogle Scholar
  17. 17.
    Sargsyan, A., Pashayan–Leroy, Y., Leroy, C., Malakyan, Yu., and Sarkisyan, D., JETP Lett., 2015, vol. 102, p. 487.ADSCrossRefGoogle Scholar
  18. 18.
    Sargsyan, A., Pashayan–Leroy, Y., Leroy, C., and Sarkisyan, D., J. Exp. Theor. Phys., 2016, vol. 123, p. 395.ADSCrossRefGoogle Scholar
  19. 19.
    Sargsyan, A., Amiryan, A., Cartaleva, S., and Sarkisyan, D., J. Exp. Theor. Phys., 2017, vol. 125, p. 43.ADSCrossRefGoogle Scholar
  20. 20.
    Sargsyan, A., Hakhumyan, G., Leroy, C., Pashayan–Leroy, Y., Papoyan, A., and Sarkisyan, D., Opt. Lett., 2012, vol. 37, p. 1379.ADSCrossRefGoogle Scholar
  21. 21.
    Sargsyan, A.D., Hakhumyan, G.T., Amiryan, A.H., Leroy, C., Sarkisyan, H.S., and Sarkisyan, D.H., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 317.ADSCrossRefGoogle Scholar
  22. 22.
    Sargsyan, A., Papoyan, A., Hughes, I.G., Adams, Ch.S., and Sarkisyan, D., Opt. Lett., 2017, vol. 42, p. 1476.ADSCrossRefGoogle Scholar
  23. 23.
    Sargsyan, A., Tonoyan, A., Mirzoyan, R., Sarkisyan, D., Wojciechowski, A., and Gawlik, W., Opt. Lett., 2014, vol. 39, p. 2270.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. Sargsyan
    • 1
  • A. Tonoyan
    • 1
  • G. Hakhumyan
    • 1
  • A. Amiryan
    • 1
    • 2
    Email author
  • P. Todorov
    • 3
  • S. Cartaleva
    • 3
  • D. Sarkisyan
    • 1
  1. 1.Institute for Physical Research, NAS of ArmeniaAshtarakArmenia
  2. 2.Université Bourgogne – Franche-ComtéDijonFrance
  3. 3.Institute of ElectronicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations