Determination of the Scattering Matrix of Multiple Target by the Received OFDM Radar Signal

  • G. A. MkrtchyanEmail author


An algorithm is proposed that establishes the one-to-one correspondence between the elements of the set of distances {R} = (r0, r1,…, rL–1) and the set of velocities {V} = (v0, v1,…, vL–1), obtained in the OFDM radar separately by two orthogonal 1D fast discrete Fourier transforms (FFT). The method is based on the generation of all possible combinations between the elements of {R} and {V} sets, constructing a model of the channel impulse response \({\left[ {{{\widehat H}_m}} \right]_{n,k}}\) for each combination and comparing it with the experimentally obtained \({\left[ {\widetilde H} \right]_{n,k}}\) to determine the plausible combination of distances and velocities. It has been found that the best plausibility criterion is the minimization of the norm of the intermatrix distance \({d_\infty }\left( {\widehat {H,}\widetilde H} \right) = \mathop {\max }\limits_{1 \leqslant n \leqslant N}\; \mathop {\max }\limits_{1 \leqslant k \leqslant K} \left| {{{\widehat h}_{n,k}} - {{\widetilde h}_{n,k}}} \right|\).


radar scattering matrix fast Fourier transform signal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rohling, H., OFDM, Signals and Communication Technology, Berlin, Heidelberg: Springer, 2011.Google Scholar
  2. 2.
    Chen, P., Wang, P., and Sun, J., Signals and Communication Technology, IEEE, 2011, vol. 3.Google Scholar
  3. 3.
    Zhang, J. and Zhao, Q., 2010 Int. Conference on Communications, Circuits and Systems, IEEE, 2010, vol. 102(6), p. 19.Google Scholar
  4. 4.
    Sturm, C. and Wiesbeck, W., Proc. IEEE, 2011, vol. 99(7), p. 1236.Google Scholar
  5. 5.
    Braun, M., Sturm, C., Niethammer, A., and Jondral, F.K., 2009 IEEE 20th Int. Symposium on Personal, Indoor and Mobile Radio Communications, 2009, p. 3020.CrossRefGoogle Scholar
  6. 6.
    Braun, M., OFDM Radar Algorithms in Mobile Communication Networks, dissertation, 2014.Google Scholar
  7. 7.
    Xia, Y., Song, Z., Lu, Z., and Fu, Q., Chinese J. Aeronaut, 2016, vol. 29(2), p. 492.Google Scholar
  8. 8.
    Levanon, N., Record of the IEEE 2000 International Radar Conference, 2000, p. 683.Google Scholar
  9. 9.
    Levanon, N., IEEE Proc.–Radar, Sonar Navig, 2000, vol. 147(6), p. 276.Google Scholar
  10. 10.
    Sen, S. and Nehorai, A., IEEE Trans. Signal Process, 2011, vol. 59(1), p. 78.Google Scholar
  11. 11.
    Sen, S., IEEE Sens. J., 2014, vol. 14(10), p. 3548.Google Scholar
  12. 12.
    Liu, Y., Liao, G., Xu, J., Yang, Z., and Zhang, Y., IEEE Commun. Lett., 2017, vol. 21(10), p. 2174.Google Scholar
  13. 13.
    Wang, W.–Q., Def. Sci. J., 2012, vol. 62(6), p. 427.Google Scholar
  14. 14.
    Tigrek, R.F., de Heij, W.J.A., and van Genderen. P., IEEE Trans. Aerosp. Electron. Syst., 2012, vol. 48(1), p. 130.Google Scholar
  15. 15.
    Sturm, C., Pancera, E., Zwick, T., and Wiesbeck, W., 2009 IEEE Radar Conference, 2009, p. 1.CrossRefGoogle Scholar
  16. 16.
    Sturm, C., Braun, M., Zwick, T., and Wiesbeck, W., 7th Eur. Radar Conf., 2010, p. 73.Google Scholar
  17. 17.
    Dahleh, M., Dahleh, M.A., and Verghese, G., Lectures on Dynamic Systems and Control, Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, 2017.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Radiophysics and ElectronicsNAS of ArmeniaAshtarakArmenia

Personalised recommendations