Skip to main content
Log in

Numerical Simulation of the Movement of Frenkel–Kontorova Dislocations in Aluminum Single Crystals at Low Temperatures

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The motion of Frenkel–Kontorova dislocations in the single crystals of aluminum at low temperatures has been studied, by means of the computer simulation. It is shown that the dislocation movement is realized by the quantum tunneling of the kinks of dislocations through the Peierls barriers. It is shown that the action of the Peierls high barrier is analogous to the action of low temperatures, and if the Peierls barrier overcome, the dislocation moves unevenly, accelerating under the action of the Peierls barrier and slowing down after overcoming the Peierls barrier. Based on the numerical experiment, the mean free path of dislocation, the distance between the Peierls potential barriers and the width of the Peierls barrier are calculated. The computed values correspond to the real values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estrin, YU.Z., Isayev, N.V., Grigorova, T.V., Pustovalov, V.V., Fomenko, V.S., Shumilin, S.E., Braude, I.S., Malygin, S.V., Reshetnyak, M.V., and Yanechek, M., Fizika nizkikh temperatur (Low Temperatures Physics), 2008, Vol. 34, p. 842.

    Google Scholar 

  2. Price. J. and Lothe, J., Theory of Dislocations, Second Edition, Publisher: Kreiger, 1992.

    Google Scholar 

  3. Arakelyan, M.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, Vol. 50, p. 95.

    Article  ADS  Google Scholar 

  4. Petukhov, B.V. and Pokrovskii, V.L., JETP, 1973, Vol. 36, p. 336.

    ADS  Google Scholar 

  5. Kolmogorov, V.L., Mekhanika obrabotki metallov davleniem (Metal Forming Mechanics), Yekaterinburg: Ural State Technical University, 2001.

    Google Scholar 

  6. Malygin, G.A., Phys. Solid State, 2007, Vol. 49, p. 1013.

    Article  ADS  Google Scholar 

  7. Malygin, G.A., Phys. Solid State, 2011, Vol. 53, p. 763.

    Article  ADS  Google Scholar 

  8. Nikitenko, V.I., Farber, B.Ya., and Iunin, Yu.L., JETP Letters, 1985, Vol. 41, p. 124.

    ADS  Google Scholar 

  9. Fogel, M.B., Trullinger, S.E., Bishop, A.R., and Krumhans, J.A., Phys. Rev. B, 1977, Vol. 15, p. 1578.

    Article  ADS  MathSciNet  Google Scholar 

  10. Melik-Shakhnazarov, V.A., Mirzoeva, I.I., and Naskidashvili, I.A., JETP Letters, 1986, Vol. 43, p. 316.

    ADS  Google Scholar 

  11. Parkhomenko, T.A. and Pustovalow, V.V., Phys. Stat. Sol. (a), 1982, Vol. 74, p. 11.

    Article  ADS  Google Scholar 

  12. Pustovalov, V.V., Fizika nizkikh temperatur (Low Temperatures Physics), 2000, Vol. 26, p. 375.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Arakelyan.

Additional information

Original Russian Text © M.M. Arakelyan, E.A. Nazaryan, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 4, pp. 489–500.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelyan, M.M., Nazaryan, E.A. Numerical Simulation of the Movement of Frenkel–Kontorova Dislocations in Aluminum Single Crystals at Low Temperatures. J. Contemp. Phys. 53, 367–375 (2018). https://doi.org/10.3103/S1068337218040126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337218040126

Keywords

Navigation