Fabrication and Investigation of Photovoltaic Converters Based on Polycrystalline Silicon Grown on Borosilicate Glass


The microcrystalline Si layers with grain sizes of up to several tens of micrometers were grown. The physical vapor deposition (PVD), amorphous–liquid–crystalline (ALC) transition technique and a steady-state liquid phase epitaxy (SSLPE) are used for the fabrication of three different samples. The first sample under consideration was prepared first by deposition of a-Si onto glass substrates by PVD at room temperature, followed by heating from the front side to ~300°C and deposition of an indium metallic solvent. At the preparation of the second sample, an additional silicon layer with the thickness of 400 nm was deposited. A sample, when after that a c-Si was grown on the seed layer by SSLPE from indium solution is referred as a third sample. The resulting samples have a strong absorption edge in the mid-infrared region around 1960 cm−1. Six well-resolved oscillations with an average period of δB = 0.1214 T are revealed on the third sample’s magnetoresistance curve at gradually increasing of the magnetic field from zero up to 1.6 T. It is assumed that either Aharonov–Bohm effect or kinetic phenomena taking place in the grains boundaries at lateral current flow are responsible for those oscillations. Quantitative evaluations show that due to the strong absorption in mid-infrared region, enlargement of the photoresponse spectrum will occur and the efficiency of solar and other thermal energy conversion should be around ~10–15% higher than that of traditional PV cells based on silicon on glass structures.

This is a preview of subscription content, log in to check access.


  1. 1.

    Wedlock, B.D., Proceedings of IEEE, 1963, Vol. 51, p. 694.

    Article  Google Scholar 

  2. 2.

    Wanlass, M.V., Ward, J.S., Emery, K.A., Al-Jassin, M.M., Jones, K.M., and Coutts, N.J., Solar Energy Materials and Solar Cells, 1996, vol. 41/42, p. 405.

    Google Scholar 

  3. 3.

    Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., Kazaryan, M.S., Touryan, K.J., and Wanlass, M.W., Thin Solid Films, 2004, vol. 451–452, p. 124.

    Google Scholar 

  4. 4.

    Carnel, L., Gordon, I., Van Gestel, D., Beaucarne, G., and Poortmans, J., Thin Solid Films, 2008, Vol. 16, p. 6839.

    ADS  Article  Google Scholar 

  5. 5.

    Green, M.A., Appl. Phys. A, 2009, Vol. 96, p. 153.

    ADS  Article  Google Scholar 

  6. 6.

    Gawlik, A., Plentz, J., Hoger, I., Andra, G., Schmidt, T., Bruckner, U., and Falk, F., Phys. Stat. Solidi (a), 2015, Vol. 212, p. 162.

    ADS  Article  Google Scholar 

  7. 7.

    Amkreutz, D., Haschke, J., Haring, T., Ruske, F., and Rech, B., Solar Energy Materials and Solar Cells, 2014, Vol. 123, p. 13.

    Article  Google Scholar 

  8. 8.

    Bansen, R., Ehlers, C., Teubner, T., Böttcher, K., Gambaryan, K., Schmidtbauer, J., and Boeck, T., J. Photonics for Energy, 2016, Vol. 6, p. 025501.

    ADS  Article  Google Scholar 

  9. 9.

    Beaucarne, G., Duerinckx, F., Kuzma, I., Van Nieuwenhuysen, K., Kim, H., and Poortmans, J., Thin Solid Films, 2006, vol. 511–512, p. 533.

    Google Scholar 

  10. 10.

    Capper, P. and Mauk, M., Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, Chichester, UK: Wiley, 2007.

    Google Scholar 

  11. 11.

    Shi, Z., J. Mater. Sci. Electron., 1994, Vol. 5, p. 305.

    Article  Google Scholar 

  12. 12.

    Silier, I., Gutjahr, A., Banhart, F., Konuma, M., Bauser, E., Schollkopf, V., and Frey, H., Mater. Lett., 1996, Vol. 28, p. 87.

    Article  Google Scholar 

  13. 13.

    Bansen, R., Heimburger, R., Schmidtbauer, J., Teubner, T., Markurt, T., Ehlers, C., and Boeck, T., Appl. Phys. A, 2015, Vol. 119, p. 1577.

    ADS  Article  Google Scholar 

  14. 14.

    Heimburger, R., Desmann, N., Teubner, T., Schramm, H.-P., Boeck, T., and Fornari, R., Thin Solid Films, 2012, Vol. 520, p. 1784.

    ADS  Article  Google Scholar 

  15. 15.

    Yu, L. and Cabarrocas, P.R.I., Phys. Rev. B, 2010, Vol. 81, p. 085323.

    ADS  Article  Google Scholar 

  16. 16.

    Wagner, R.S., and Ellis, W.C., Applied Physics Letters, 1964, Vol. 4, p. 89.

    ADS  Article  Google Scholar 

  17. 17.

    Aharonov, Y. and Bohm, D., Phys. Rev., 1959, Vol. 115, p. 485.

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Gambaryan, K.M., Harutyunyan, V.G., Aroutiounian, V.M., Ai, Y., Ashalley, E., and Wang, Z.M., J. Physics D: Applied Physics, 2015, Vol. 48, p. 275302.

    Article  Google Scholar 

  19. 19.

    Gambaryan, K.M., Aroutiounian, V.M., Harutyunyan, V.G., and Yeranyan, L.S., J. Physics: IOP Conf. Series, 2017, Vol. 829, p. 012021.

    Google Scholar 

  20. 20.

    Fomin, V.M., Physics of Quantum Rings, Berlin: Springer, 2014.

    Google Scholar 

  21. 21.

    Harutyunyan, V.G., Gambaryan, K.M., Aroutiounian, V.M., and Harutyunyan, I.G., Infrared Physics & Technology, 2015, Vol. 70, p. 12.

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. M. Gambaryan.

Additional information

Original Russian Text © K.M. Gambaryan, V.G. Harutyunyan, V.M. Aroutiounian, T. Boeck, R. Bansen, C. Ehlers, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 4, pp. 468–476.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gambaryan, K.M., Harutyunyan, V.G., Aroutiounian, V.M. et al. Fabrication and Investigation of Photovoltaic Converters Based on Polycrystalline Silicon Grown on Borosilicate Glass. J. Contemp. Phys. 53, 351–357 (2018). https://doi.org/10.3103/S1068337218040102

Download citation


  • microcrystalline grain
  • silicon
  • photovoltaics
  • thermophotovoltaics