Skip to main content
Log in

Three-Layer Detection Pixel of Single-Photon Thermoelectric Detector Based on Rare-Earth Hexaborides

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The results of computer simulation of heat propagation processes in the three-layer detection pixel of single-photon thermoelectric detector after the absorption of single photons with the energies 0.5–4.13 eV are presented. The various geometries of the detection pixel consisting of rareearth hexaborides are considered. The lanthanum hexaboride (LaB6) is chosen as the absorber material, and for the materials of thermoelectric sensor the cerium (CeB6) and lanthanum–cerium (La0.99Ce0.01) B6 hexaborides are chosen. The problem is solved to achieve the high system efficiency of thermoelectric detector for the detection of photons in the wavelength range from the UV to the near IR. The computer modeling was carried out based on the equation of heat propagation from the limited volume with the use of three-dimensional matrix method for differential equations. It is shown that a single-photon thermoelectric detector with a three-layer detection pixel made only of hexaborides will have the gigahertz count rate, high-energy resolution, and detection efficiency exceeding 90%. Taking into account the advantages of the three-layer detection pixel compared to the single-layer it can be argued that the three-layer detection pixel of the thermoelectric detector has the great prospects to solve a number of single-photon detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, Vol. 53, p. 242.

    Article  ADS  Google Scholar 

  2. Hadfield, R.H., Nature Photonics, 2009, Vol. 3, p. 696.

    Article  ADS  Google Scholar 

  3. Yamashita, T., Miki, S., and Terai, H., IEICE Transactions on Electronics, 2017, vol. E100-C, p. 274.

    Google Scholar 

  4. Gulian, A., Wood, K., van Vechten, D., and Fritzdet, G., J. Mod. Opt., 2004, Vol. 51, p. 1467.

    Article  ADS  Google Scholar 

  5. Gulian, A., Wood, K., Van Vechten, D., Fritz, G., Wu, H.-D., Bounak, S., Bussman, K., Winzer, K., Kunii, S., Gurin, V., Mitterer, C., Carlsson, M., Golf, F., Kuzanyan, A., Badalyantz, G., Harutyunyan, S., Petrosyan, S., Vardanyan, V., Paronyan, T., and Nikoghosyan V., Nuclear Instruments and Methods in Physics Research, 2004, vol. A520, p. 36.

    Google Scholar 

  6. Wood, K., Van Vechten, D., Fritz, G., Wu, H.-D., Bounak, S., Bussman, K., Winzer, K., Kunii, S., Gurin, V., Mitterer, C., Carlsson, M., Golf, F., Kuzanyan, A., Badalyantz, G., Harutyunyan, S., Petrosyan, S., Vardanyan, V., Paronyan, T., Nikoghosyan, V., and Gulian, A., Nuclear Instruments and Methods in Physics Research, 2004, vol. A 520, p. 56.

    Google Scholar 

  7. Petrosyan, V.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2011, Vol. 46, p. 125.

    Article  ADS  Google Scholar 

  8. Kuzanyan, A.A. and Kuzanyan, A.S., Proc. SPIE, 2013, Vol. 8773, p. 87730L.

    Article  ADS  Google Scholar 

  9. Kuzanyan, A., Nikoghosyan, V., and Kuzanyan, A., Sensors & Transducers, 2015, Vol. 191, p. 57.

    Google Scholar 

  10. Kuzanyan, A.A., Nano Studies, 2014, Vol. 9, p. 93.

    Google Scholar 

  11. Kuzanyan, А.А., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Phys. Conf. Ser., 2016, Vol. 673, p. 012007.

    Article  Google Scholar 

  12. Kuzanyan, А., Kuzanyan, A., and Nikoghosyan, V., Armenian Patent, no. 2946, 2015.

    Google Scholar 

  13. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, Vol. 51, p. 181.

    Article  ADS  Google Scholar 

  14. Kuzanyan, А., Kuzanyan, A., and Nikoghosyan, V., Armenian Patent, no. 3043, 2016.

    Google Scholar 

  15. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., and Nam, S.W., Nat. Photon, 2013, Vol. 7, p. 210.

    Article  ADS  Google Scholar 

  16. Lita, A.E., Calkins, B., Pellochoud, L.A., Miller, A.J., and Nam, S., Proc. 13th Int. Workshop LTD 13, 2009, CP1185, p. 351.

    Google Scholar 

  17. Lita, A.E., Calkins, B., Pellochoud, L.A., Miller, A.J., and Nam, S., Proc. SPIE, 2010, Vol. 7681, p. 76810D.

    Article  ADS  Google Scholar 

  18. Rosenberg, D., Lita, A.E., Miller, A.J., Nam, S., and Schwall, R.E., IEEE Trans. Appl. Supercond., 2005, Vol. 15, p. 575.

    Article  ADS  Google Scholar 

  19. Correa, R.E., Dauler, E.A., Nair, G., Pan, S.H., Rosenberg, D., Kerman, A.J., Molnar, R.J., Hu, X., Marsili, F., Anant, V., Berggren, K.K., and Bawendi, M.G., Nano Lett., 2012, Vol. 12, p. 2953.

    Article  ADS  Google Scholar 

  20. Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., and Xie, X.M., Sci. China–Phys. Mech. Astron., 2017, Vol. 60, p. 120314.

    Article  Google Scholar 

  21. Zadeh, I.E., Los, J.W.N., Gourgues, R.B.M., Bulgarini, G., Dobrovolskiy, S.M., Zwiller, V., and Dorenbosz, S.N., ArXiv:1801.06574v1 (2018).

    Google Scholar 

  22. Caloz, M., Perrenoud, M., Autebert, C., Korzh, B., Weiss, M., Schönenberger, C., Warburton, R.J., Zbinden, H., and Bussières, F., Appl. Phys. Lett., 2018, Vol. 112, p. 061103.

    Article  ADS  Google Scholar 

  23. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., Sensors & Transducers, 2016, Vol. 207, p. 21.

    Google Scholar 

  24. Kuzanyan, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, Vol. 51, p. 360.

    Article  ADS  Google Scholar 

  25. Ordal, M.A., Bell, R.J., Alexander, R.W., Newquist, L.A., and Querry, M.R., Appl. Opt., 1988, Vol. 27, p. 1203.

    Article  ADS  Google Scholar 

  26. Petrosyan, S.I., Kuzanyan, A.A., Badalyan, G.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, Vol. 53, p. 157.

    Article  ADS  Google Scholar 

  27. Bethune, D.S., Risk, W.P., and Pabst, G.W., J. Modern Optics, 2004, Vol. 51, p. 1359.

    Article  ADS  Google Scholar 

  28. Zappa, F., Lacaita, A.L., Covas, D., and Lovati, P., Opt. Eng., 1996, Vol. 35, p. 938.

    Article  ADS  Google Scholar 

  29. Gurin, V.N., Korsukova, M.M., Karin, M.G., Sidorin, K.K., Smirnov, I.A., and Silky, F.I., FTT, 1980, Vol. 22, p. 715.

    Google Scholar 

  30. Igityan, A.S., Kafadaryan, Y.A., Aghamalyan, N.R., Petrosyan, S.I., Badalyan, G.R., Gambaryan, I.A., Hovsepyan, R.K., and Semerjian, H.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, Vol. 49, p. 277.

    Article  ADS  Google Scholar 

  31. Takeda, H., Kuno, H., and Adachi, K., J. Am. Ceram. Soc., 2008, Vol. 91, p. 2897.

    Article  Google Scholar 

  32. Sani, E., Mercatelli, L., Meucci, M., Zoli, L., and Sciti, D., Scientific Reports, 2017, Vol. 7, p. 718.

    Article  ADS  Google Scholar 

  33. Korsukova, M.M., Gurin, V.N., Otani, Sh., and Ishizava, Y., Solid State Commun., 1996, Vol. 99, p. 215.

    Article  ADS  Google Scholar 

  34. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, Vol. 53, p. 73.

    Article  ADS  Google Scholar 

  35. Schell, G., Winter, H., Rietschel, H., and Gompf, F., Phys. Rev. B, 1982, Vol. 25, p. 1589.

    Article  ADS  Google Scholar 

  36. van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian, A., Nucl. Instrum. Meth. Phys. Res., 2000, Vol. 444, p. 42.

    Article  ADS  Google Scholar 

  37. Fritz, G.G., Wood, K.S., van Vechten, D., Gyulamiryan, A.L., Kuzanyan, A.S., Giordano, N.J., Jacobs, T.M., Wu, H.-D., Horwitz, J.S., and Gulian, A.M., Proc. SPIE, 2000, Vol. 4140, p. 459.

    Article  ADS  Google Scholar 

  38. Kuzanyan, As., Kuzanyan, Ar., and Nikoghosyan, V., Sensors & Transducers, 2016, Vol. 207, p. 21.

    Google Scholar 

  39. Kuzanyan, A., Sensors & Transducers, 2017, Vol. 217, p. 28.

    Google Scholar 

  40. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., Proc. of SPIE, 2017, Vol. 10229, p. 102290P.

    Google Scholar 

  41. Anisimov, M.A., Glushkov, V.V., Bogach, A.V., Demishev, S.V., Samarin, N.A., Gavrilkin, S.Yu., Mitsen, K.V., Shitsevalova, N.Yu., Levchenko, A.V., Filippov, V.B., Gabani, S., Flachbart, K., and Sluchanko, N.E., J. Exp. Theor. Phys., 2013, Vol. 116, p. 760.

    Article  ADS  Google Scholar 

  42. Peysson, Y., Ayache, C., and Salce B., J. Magnetism and Magnetic Materials, 1986, Vol. 59, p. 33.

    Article  ADS  Google Scholar 

  43. Furukawar, G.T., Douglasr, T.B., McCoske Yr, R.E., and Ginnings, D.C., J. Research National Bureau Stand., 1956, Vol. 57, p. 67.

    Article  Google Scholar 

  44. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf

  45. Fujita, T., Suzuki, M., Komatsubara, T., Kunii, S., Kasuya, T., and Ohtsuka, T., Solid State Commun., 1980, Vol. 35, p. 569.

    Article  ADS  Google Scholar 

  46. Popov, P.A., Novikov, V.V., Sidorov, A.A., and Maksimenko, E.V., Inorg Mater, 2007, vol. 43, p 1187.

    Google Scholar 

  47. Ditmars, D.A., Ishihara, S., Chang, S.S., Bernstein, G., and West, E.D., J. Research National Bureau Stand., 1982, Vol. 87, p. 159.

    Article  Google Scholar 

  48. Berman, R., Foster, E.L., and Ziman, J.M., Proc. R. Soc. Lond. A, 1955, Vol. 231, p. 130.

    Article  ADS  Google Scholar 

  49. Petrosyan, V., Vardanyan, V., Kuzanyan, V., Konovalov, M., Gurin, V., and Kuzanyan, A., Solid State Sciences, 2012, Vol. 14, p. 1653.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuzanyan.

Additional information

Original Russian Text © A.S. Kuzanyan, A.A. Kuzanyan, V.R. Nikoghosyan, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 4, pp. 451–467.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.S., Kuzanyan, A.A. & Nikoghosyan, V.R. Three-Layer Detection Pixel of Single-Photon Thermoelectric Detector Based on Rare-Earth Hexaborides. J. Contemp. Phys. 53, 338–350 (2018). https://doi.org/10.3103/S1068337218040096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337218040096

Keywords

Navigation