Skip to main content
Log in

Single-Layer Detection Pixel of Single-Photon Thermoelectric Detector Based on Rare-Earth Hexaborides

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The results of computer simulation of the heat propagation processes in the single-layer detection pixel of single-photon thermoelectric detector after absorption of photons with the energy of 0.8 eV are presented. The various geometries of detection pixel made from rare-earth hexaborides are considered. As the material of absorber, the lanthanum hexaboride (LaB6) is chosen, and as the materials of thermoelectric sensor, the hexaborides of cerium (CeB6), and lanthanum–cerium (La0.99 Ce0.01)B6 are used. The choice of LaB6 as an absorber material had the goal to ensure a high system efficiency of photons detection in the near IR region. The computer modeling was carried out based on the equation of heat propagation from a limited volume, using the three-dimensional matrix method for differential equations. It is shown that the single-photon thermoelectric detector with the single-layer detection pixel made only of hexaborides will have the count rates of GHz and the higher detection efficiency as compared with the sensitive element with the heavy metal as an absorber. In addition, such a sensitive element is more stable mechanically when it is cooled to the operating temperatures of 0.5 and 9 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadfield, R.H., Nature Photonics, 2009, vol. 3, p. 696.

    Article  ADS  Google Scholar 

  2. Yamashita, T., Miki, S., and Terai, H., IEICE Transactions on Electronics, 2017, vol. E100-C, p. 274.

    Google Scholar 

  3. Gulian, A., Wood, K., van Vechten, D., and Fritzdet, G., J. Mod. Opt., 2004, vol. 51, p. 1467.

    Article  ADS  Google Scholar 

  4. Petrosyan, V.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2011, vol. 46, p. 125.

    Article  ADS  Google Scholar 

  5. Kuzanyan, A.A. and Kuzanyan, A.S., Proc. SPIE, 2013, vol. 8773, p. 87730L.

    Article  ADS  Google Scholar 

  6. Kuzanyan, A., Nikoghosyan, V., and Kuzanyan, A., Sensors & Transducers, 2015, vol. 191, p. 57.

    Google Scholar 

  7. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., and Nam, S.W., Nat. Photon, 2013, vol. 7, p. 210.

    Article  ADS  Google Scholar 

  8. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., Sensors & Transducers, 2016, vol. 207, p. 21.

    Google Scholar 

  9. Kuzanyan, A.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 360.

    Article  ADS  Google Scholar 

  10. Ordal, M.A., Bell, R.J., Alexander, R.W., Newquist, L.A., and Querry, M.R., Appl. Opt., 1988, vol. 27, p. 1203.

    Article  ADS  Google Scholar 

  11. Petrosyan, S.I., Kuzanyan, A.A., Badalyan, G.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 157.

    Article  ADS  Google Scholar 

  12. Bethune, D.S., Risk, W.P., and Pabst, G.W., J. Modern Optics, 2004, vol. 51, p. 1359.

    Article  ADS  Google Scholar 

  13. Zappa, F., Lacaita, A.L., Covas, D., and Lovati, P., Opt. Eng., 1996, vol. 35, p. 938.

    Article  ADS  Google Scholar 

  14. Gurin, В.N., Korsukova, M.M., Karin, M.G., Sidorin, K.K., Smirnov, I.A., and Shelx, F.I., FTT, 1980, vol. 22, p. 715.

    Google Scholar 

  15. Igityan, A.S., Kafadaryan, Y.A., Aghamalyan, N.R., Petrosyan, S.I., Badalyan, G.R., Gambaryan, I.A., Hovsepyan, R.K., and Semerjian, H.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 277.

    Article  ADS  Google Scholar 

  16. Takeda, H., Kuno, H., and Adachi, K., J. Am. Ceram. Soc., 2008, vol. 91, p. 2897.

    Article  Google Scholar 

  17. Sani, E., Mercatelli, L., Meucci, M., Zoli, L., and Sciti, D., Scientific Reports, 2017, vol. 7:718, p. 1.

    Google Scholar 

  18. Korsukova, M.M., Gurin, V.N., Otani, Sh., and Ishizava, Y., Solid State Commun., 1996, vol. 99, p. 215.

    Article  ADS  Google Scholar 

  19. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 73.

    Article  ADS  Google Scholar 

  20. Schell, G., Winter, H., Rietschel, H., and Gompf, F., Phys. Rev. B, 1982, vol. 25, p. 1589.

    Article  ADS  Google Scholar 

  21. van Vechten, D., Wood, K., Fritz, G., Horwitz, J., Gyulamiryan, A., Kuzanyan, A., Vartanyan, V., and Gulian. A., Nucl. Instrum. Meth. Phys. Res., 2000, vol. 444, p. 42.

    Article  ADS  Google Scholar 

  22. Fritz, G.G., Wood, K.S., van Vechten, D., Gyulamiryan, A.L., Kuzanyan, A.S., Giordano, N.J., Jacobs, T.M., Wu, H.-D., Horwitz, J.S., and Gulian, A.M., Proc. SPIE, 2000, vol. 4140, p. 459.

    Article  ADS  Google Scholar 

  23. Kuzanyan, A.S. and Kuzanyan, A.A., Proc. SPIE, 2015, vol. 9504, p. 95040O.

    Google Scholar 

  24. Kuzanyan, A.A., Kuzanyan, A.S., and Nikoghosyan, V.R., J. Phys. Conf. Ser., 2016, vol. 673, p. 012007.

    Article  Google Scholar 

  25. Kuzanyan, A.A., Nikoghosyan, V.R., and Kuzanyan, A.S., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, vol. 52, p. 249.

    Article  ADS  Google Scholar 

  26. Anisimov, M.A., Glushkov, V.V., Bogach, A.V., Demishev, S.V., Samarin, N.A., Gavrilkin, S.Yu., Mitsen, K.V., Shitsevalova, N.Yu., Levchenko, A.V., Filippov, V.B., Gabani, S., Flachbart, K., and Sluchanko, N.E., JETP, 2013, vol. 116, p. 760.

    Article  ADS  Google Scholar 

  27. Peysson, Y., Ayache, C., and Salce, B., J. Magnetism and Magnetic Materials, 1986, vol. 59, p. 33.

    Article  ADS  Google Scholar 

  28. Furukawar, G.T., Douglasr, T.B., McCoske Yr, R.E., and Ginnings, D.C., J. Research National Bureau Stand., 1956, vol. 57, p. 67.

    Article  Google Scholar 

  29. http://www.phys.ufl.edu/ireu/IREU2013/pdf_reports/Allen_Scheie_FinalReport.pdf

  30. Fujita, T., Suzuki, M., Komatsubara, T., Kunii, S., Kasuya, T., and Ohtsuka, T., Solid State Commun., 1980, vol. 35, p. 569.

    Article  ADS  Google Scholar 

  31. Popov, P.A., Novikov, V.V., Sidorov, A.A., and Maksimenko, E.V., Inorg Mater, 2007, vol. 43, p. 1187.

    Article  Google Scholar 

  32. Ditmars, D.A., Ishihara, S., Chang, S.S., Bernstein, G., and West, E.D., J. Res. Nat. Bur. Stand., 1982, vol. 87, p. 159.

    Article  Google Scholar 

  33. Berman, R., Foster, E.L., and Ziman, J.M., Proc. R. Soc. Lond. A, 1955, vol. 231, p. 130.

    Article  ADS  Google Scholar 

  34. Petrosyan, V., Vardanyan, V., Kuzanyan, V., Konovalov, M., Gurin, V., and Kuzanyan, A., Solid State Sciences, 2012, vol. 14, p. 1653.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuzanyan.

Additional information

Original Russian Text © A.A. Kuzanyan, A.S. Kuzanyan, V.R. Nikoghosyan, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 3, pp. 320–332.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzanyan, A.A., Kuzanyan, A.S. & Nikoghosyan, V.R. Single-Layer Detection Pixel of Single-Photon Thermoelectric Detector Based on Rare-Earth Hexaborides. J. Contemp. Phys. 53, 242–251 (2018). https://doi.org/10.3103/S106833721803009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833721803009X

Keywords

Navigation